User Manual
 6010
 125 MHz Programmable Counter / Timer

Serial Prefix: 66

Tabor Electronics Ltd.

9 Hatasia Street, Tel Hanan, Israel 20302
TEL: (972) 4821 3393, FAX: (972) 48213388
[www.taborelec.com]

PUBLICATION DATE: July 18, 2001
REVISION: B
Copyright 2001 by Tabor Electronics. All rights reserved. This book or parts thereof may not be reproduced in any form without written permission of the publisher.

Warranty

Tabor Electronics' products are warranted against defects in material and workmanship, when used under normal operating conditions, for a period of one year after delivery. Tabor Electronics will repair or replace without charge any product which proves defective during this period. Repair necessitated by misuse of the product is not covered by this warranty. No other warranties are expressed or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Tabor Electronics is not liable for consequential damage.

REPAIR AND CALIBRATION

Prior authorization is required from Tabor Electronics before products are returned for service. All service must be performed by Tabor Electronics' factory or an authorized service center. Please contact the factory directly for repair and re-calibration:

Tabor Electronics, Ltd.
9 Hatasia Street
Tel Hanan, Israel 20302
Tel: 972-4-821-3393
Fax: 972-4-821-3388

Tabor Electronics Ltd.

REPAIR AND CALIBRATION REQUEST FORM

To allow us to better understand your repair requests, we suggest you use the following outline when calling and include a copy with your instrument to be sent to the Tabor Repair Facility.

Model \qquad Serial No. \qquad Date \qquad Company Name \qquad Purchase Order \# \qquad
Billing Address \qquad
City

State/Province	Zip/Postal Code	Country

Shipping Address \qquad City

State/Province	Zip/Postal Code	Country

Technical Contact \qquad Phone Number (
) \qquad
Purchasing Contact \qquad Phone Number (\qquad

1. Describe, in detail, the problem and symptoms you are having. Please include all set up details, such as input/output levels, frequencies, waveform details, etc.
\qquad
\qquad
\qquad
2. If problem is occurring when unit is in remote, please list the program strings used and the controller type.
3. Please give any additional information you feel would be beneficial in facilitating a faster repair time (i.e., modifications, etc.)
4. Is calibration data required?

Call before shipping
Note: We do not accept "collect" shipments.

Yes No (please circle one)
Ship instruments to nearest support office listed on back.

Safety Precautions

The following safety precautions should be observed before using this product and associated computer. Although some instruments and accessories would normally be used with non-hazardous voltages, there are situations where hazardous conditions may be present. This product is intended for use by qualified personnel who recognize shock hazards and are familiar with the safety precautions required to avoid possible injury. Read the operating information carefully before using the product. Exercise extreme caution when a shock hazard is present. Lethal voltage may be present on cables, connector jacks, or test fixtures.

The American National Standard Institute (ANSI) states that a shock hazard exists when voltage levels greater than 30 V RMS, 42.4 V peak, or 60 VDC are present. A good safety practice is to expect that hazardous voltage is present in any unknown circuit before touching or disconnecting the line cord. Before operating an instrument, make sure the line cord is connected to a properly grounded power receptacle. Inspect the connecting cables and test leads for possible wear, cracks, or breaks before each use.

For maximum safety, do not touch the product, test cables, or any other of the instrument parts while power is applied to the circuit under test. ALWAYS remove power from the entire test system before connecting cables or jumpers, installing or removing cards from the computer, or making internal changes, such as changing card address. Do not touch any object that could provide a current path to the common side of the circuit under test or power line (earth) ground. Always keep dry hands while handling the instrument. If you are using test fixtures, keep the lid closed while power is applied to the device under test. Safe operation requires that the computer lid be closed at all times during operation.

Carefully read the Safety Precautions instructions that are supplied with your computer. Instruments, cables, leads or cords should not be connected to humans. Before performing any maintenance, disconnect the line cord and all test cables. Finally, maintenance should be performed by qualified service personnel only. If you have no past experience in instrument servicing, we strongly recommend that installation and initial tests on the instrument be done by your dealer or by the factory itself.

Declaration of Conformity

We:
Tabor Electronics, Ltd.
P.O. Box 404

Tel Hanan, Israel 20302
declare, that the Arbitrary Waveform/Function Generator

Model 6010 and model 6020

meets the intent of Directive 89/336/EEC for Electromagnetic Compatibility and complies with the requirements of the Low Voltage Directive 73/23/EEC. Compliance was demonstrated to the following specifications as listed in the official Journal of the European Communities:

Safety:

EN 61010-1
IEC 1010-1 (1990) + Amendment 1 (1992)

EMC:

EN 50081-1 Emissions:
EN 55022 - Radiated, Class B
EN 55022 - Conducted, Class B
EN 50082-1 Immunity:

CONTENTS

Paragraph Page
SECTION 1. GENERAL INFORMATION
1-1 Introduction 1-1
1-2 Instrument and Manual Identification 1-2
1-3 Options 1-2
1-4 Specifications 1-2
1-5 Accessories Supplied 1-2
SECTION 2. INSTALLATION
2-1 Introduction 2-1
2-2 Unpacking and Initial Inspection 2-1
2-3 Performance Checks 2-1
2-4 Power Requirements 2-1
2-5 Grounding Requirements 2-2
2-6 Installation and Mounting 2-2
2-7 Bench Mounting 2-2
2-8 Rack Mounting 2-2
2-9 Portable Use 2-3
2-10 Short Term Storage 2-3
2-11 Long Term Storage or Repackaging For Shipment 2-3
2-12 Safety 2-4
SECTION 3. OPERATION
3-1 Introduction 3-1
3-2 Front Panel Familiarization 3-1
3-2-1 Controls 3-1
3-2-2 Connectors 3-3
3-2-3 Display And Indicators 3-3
3-3 Rear Panel Familiarization 3-4
3-3-1 Connectors and Terminals 3-4
3-4 Power-up Procedure 3-5
3-5 Software Reset 3-7
3-6 Display Messages 3-7
3-6-1 No Battery Error Message 3-7
3-6-2 IEEE-488 Error Messages 3-8
3-6-3 Error Indication 3-8
3-7 Control Selection 3-9
3-8 Selecting a Function 3-10
3-9 Selecting Gate and Delay Time 3-12
3-10 Setting Trigger Levels 3-13
3-11 Setting Input Condition Controls 3-14
3-12 Selecting The Number Of Displayed Digits 3-16
3-13 Selecting Measurement Rate 3-17
3-14 Arming 3-17
3-14-1 Continuous Arming With the Input Signal 3-17
3-14-2 Front Panel Arming 3-18
3-14-2 External Arming 3-18
3-15 Using Auto Trigger Level 3-18
3-16 Using V Peak A 3-19
3-17 Using User Gate 3-20

CONTENTS (continued)

Paragraph		Page	
3-18	Using Delay	3-20	
3-19	Using User Delay	3-21	
3-20	Using Front Panel Set-ups	3-22	
	3-20-1 Store Set-ups	3-22	
	3-20-2 Recall Set-ups	3-22	
3-21	Analog Output	3-23	
	3-21-1 Setting The Analog Output Resolution	3-23	
	3-21-2 Setting The Analog Output Offset	3-24	
3-22	Using The External Reference	3-24	
3-23	Changing The GPIB Address	3-24	
	4-1 Introduction 4 . IEEE PROGRAMMING		
			4-1
4-2 B	Bus Description	4-1	
4-3 $\begin{array}{r}\text { I } \\ 4 \\ 4 \\ 4\end{array}$	IEEE-488 Bus Lines	4-3	
	4-3-1 Bus Management Lines	4-3	
	4-3-2 Handshake Lines	4-3	
	4-3-3 Data Lines	4-4	
$\begin{array}{rrr}4-4 & \text { I } \\ 4-5 & \text { S } \\ 4-6 & \text { H } \\ & 4\end{array}$	Interface Function Codes	4-5	
	Software Considerations	4-6	
	Hardware Considerations	4-6	
	4-6-1 Typical Controlled System	4-7	
	4-6-2 Connections	4-7	
4-7	Changing GPIB Address	4-8	
4-8	Bus Commands	4-9	
	4-8-1 Uniline Commands	4-10	
	4-8-2 Universal Multiline Commands	4-10	
	4-8-3 Addressed Commands	4-12	
	4-8-4 Unaddress Commands	4-13	
	4-8-5 Device Dependent Commands	4-13	
4-9 $\begin{aligned} \text { 4 } \\ 4\end{aligned}$	Device-Dependent Command Programming	4-14	
	4-9-1 Function (F)	4-17	
	4-9-2 Channels A, B Coupling (AC, BC)	4-18	
	4-9-3 Channels A, B Attenuator (AA, BA)	4-18	
	4-9-4 Channels A, B Filter (AF, BF)	4-18	
	4-9-5 Channels A, B Slope (AS, BS)	4-18	
	4-9-6 Channels A Separate/Common (C)	4-18	
	4-9-7 Channels A, B Trigger Level (AL, BL)	4-19	
	4-9-8 Channels A, B Auto Trigger Level (L)	4-19	
	4-9-9 Gate Time (G, GU)	4-19	
	4-9-10 Delay Time (W , WU)	4-20	
	4-9-11 V Peak Measurement Rate (V)	4-20	
	4-9-12 Totalize Mode (M)	4-20	
	4-9-13 Displayed Digits (N)	4-20	
	4-9-14 Analog Output Resolution (P)	4-21	
	4-9-15 Analog Output Offset (O)	4-21	
	4-9-16 Set-ups (ST, RE)	4-21	
	4-9-17 Triggering (T)	4-21	
	4-9-18 Rate (S)	4-22	

CONTENTS (continued)

Paragraph	Page
4-9-19 Display Modes (D)	4-22
4-9-20 SRQ Mode (Q) and Serial Poll Status Byte Format	4-22
4-10 Reading From The Model 6010	4-24
4-10-1 Data Control Commands (R)	4-25
4-10-2 Terminator	4-27
4-10-3 Prefix (X)	4-27
4-11 Front Panel Error Messages	4-28
4-11-1 ILL INS (Illegal Instruction)	4-28
4-11-2 ILL PAR (Illegal Parameter)	4-28
SECTION 5. MAINTENANCE AND PERFORMANCE CHECKS	
5-1 Introduction	5-1
5-2 Line Voltage Selection	5-1
5-3 Fuse Replacement	5-2
5-4 TCXO/Clock Multiplier Option Field Installation (option 1)	5-2
5-4-1 Option 1 Installation Procedure	5-3
5-5 1.3 GHz Input Option Field Installation (option 2)	5-5
5-5-1 Option 2 Installation Procedure	5-5
5-6 Analog Output Option (option 3)	5-6
5-7 GPIB Interface Option Field Installation (option 4)	5-6
5-7-1 Option 4 Installation Procedure	5-6
5-8 Selecting an External Reference	5-7
5-9 Disassembly Instructions	5-8
5-10 Special Handling Of Static Sensitive Devices	5-9
5-11 Cleaning	5-9
5-12 Repair and Replacement	5-9
5-13 Performance Checks	5-10
5-13-1 Environmental Conditions	5-10
5-13-2 Warm-up Period	5-10
5-13-3 Recommended Test Equipment	5-10
5-14 Performance Checks Procedure	5-11
5-14-1 Channels A and B Sensitivity Check	5-11
5-14-2 Channel C sensitivity Check	5-12
5-14-3 Period A, Period A Averaged Operation Check	5-13
5-14-4 Ratio A/B Operation	5-13
5-14-5 T.I A to B Averaged and Rise A Operation Check	5-14
5-14-6 Phase A to B Operation Check	5-15
5-14-7 Totalize B Operation Check	5-16
5-14-8 Auto Trigger Level A and B Operation Check	5-17
5-14-9 Delay Operation Check	5-18
5-14-10 User Gate Operation Check	5-19
5-14-11 Analog Output Operation Check	5-19
5-14-12 Time Base Accuracy Check	5-20

CONTENTS (continued)

Paragraph Page
SECTION 6. THEORY OF OPERATION
6-1 Introduction 6-1
6-2 Overall Functional Description 6-1
6-3 Analog Circuitry 6-3
6-3-1 Input Circuits A and B 6-3
6-3-2 Input Circuit C 6-4
6-3-3 10 MHz Standard Reference Oscillator 6-6
6-3-4 10 MHz TCXO Reference Oscillator and x10 Multiplier 6-6
6-3-5 Measurement Logic Section 6-6
6-3-6 Analog Output Option 6-14
6-3-7 Power supply 6-14
6-4 Digital Circuitry 6-15
6-4-1 CPU Block Diagram 6-15
6-4-2 Memory Mapping 6-15
6-4-3 Address Decoding 6-16
6-4-4 Keyboard/Display Interface 6-16
6-4-5 IEEE Interface Option 6-16
SECTION 7. ADJUSTMENTS AND TROUBLESHOOTING
7-1 Introduction 7-1
7-2 Adjustments 7-1
7-2-1 Environmental Conditions 7-1
7-2-2 Warm-up Period 7-1
7-2-3 Recommended Test Equipment 7-1
7-2-4 Adjustment Procedures 7-1
7-3 Adjustment Procedure 7-2
7-3-1 Power Supply Adjustment 7-2
7-3-2 Trigger Level A Adjustment 7-2
7-3-3 Trigger Level B Adjustment 7-4
7-3-4 Trigger Level A Offset Adjustment 7-4
7-3-5 Trigger Level B Offset Adjustment 7-4
7-3-6 Input A x10 High Frequency Adjustment 7-5
7-3-7 Input B x10 High Frequency Adjustment 7-5
7-3-8 Standard - 5PPM Time Base Adjustment 7-5
7-3-9 TCXO Time Base Adjustment (option 1) 7-6
7-3-10 Analog Ouptu Adjustment (option 3) 7-6
7-4 Troubleshooting 7-7
7-4-1 Recommended Test Equipment 7-7
7-4-2 Power-up Self Diagnostics 7-7
7-5 Troubleshooting Procedure 7-8

CONTENTS (continued)

Paragraph Page
7-5-1 Power Supply Checks 7-8
7-5-2 Digital Circuitry and Display Checks 7-9
7-5-3 Standard 5PPM Reference Oscillator Checks 7-9
7-5-4 TCXO Reference and x10 Multiplier Checks 7-9
7-5-5 Trigger Level Checks 7-9
7-5-6 Signal Conditioning and Input Circuit Checks 7-9
7-5-7 Measurement Logic Section Checks 7-9
SECTION 8. PARTS LIST
8-1 General 8-1
8-2 Ordering Information 8-1
8-3 Maintenance Kit 8-1
8-4 Parts Description 8-1
SECTION 9. SCHEMATIC DIAGRAMS
Number Page
1-1 Model 6010 Specifications 1-3
3-1 Default States After Software Reset 3-7
3-2 Front Panel Parameter Entry Limits 3-9
3-3 Gate/Delay Determination 3-13
4-1 Model 6010 Interface Function Codes 4-6
4-2 IEEE contact Designation 4-8
4-3 IEEE Bus Command Summary 4-9
4-4 Default conditions. (Status After SDC or DCL) 4-12
4-5 Device Dependent Command Summary 4-15
4-6 SRQ Mask Commands 4-23
4-7 SRQ Mask Legal Commands 4-23
4-8 Status Byte Interpretation 4-23
4-9 Data String Format 4-26
4-10 Status Word Interpretation 4-26
5-1 Line Fuse Selection 5-2
5-2 Required test equipment 5-10
7-1 Recommended Minimum Test Equipment for Troubleshooting 7-7
7-2 Power Supply Checks 7-8
7-3 Digital Circuitry and Display Checks 7-10
7-4 TCXO and x10 Multiplier Circuit Checks 7-11
7-5 Trigger Level Circuit Checks 7-11
7-6 Signal Conditioning Checks 7-12
7-7 Input Circuit Checks 7-12
7-8 Function Control Circuit Checks 7-13
7-9 Measurement Logic Section Checks 7-14
8-1 Model 6010 Parts List - Main Board assembly 8-2
8-2 Model 6010 Parts List - Front Panel Assembly 8-10
8-3 Model 6010 Parts List - Analog Output Assembly 8-11
8-4 Model 6010 Parts List - TCXO Assembly 8-11
8-5 Model 6010 Parts List - 1.3 GHz Input C 8-12

GENERAL INFORMATION

1-1. INTRODUCTION

This manual provides operating and maintenance information for the Model 6010 Programmable Counter/Timer. Section 1 is a general description of the instrument. Section 2 and 3 obtain installation and operating instructions. IEEE programming is explained in Section 4. Maintenance and performance checks are provided in Section 5. The theory of operation is described in Section 6. Section 7 outlines calibration and troubleshooting procedure. Section 8 contains tables of replaceable parts. Section 9 contains schematic and componenet location diagrams.

Model 6010 is a nine digit microprocessor based fully programmable three channels Universal Counter Timer. The instrument measures with a very high resolution and precision the following parameters: Frequency A, Frequency B, Frequency C, Period A, Rise/Fall Time A, Time interval A to B, Total count, Ratio A/B, θ A to B and Amplitude peaks. For improved resolution in time measurement, an averaging function is available - resolving intervals of pico seconds. To simplify various repetitive tests, any of 10 pre-programmed complete set-up states, stored in a non-volatile memory, can be recalled by a simple key stroke, insuring exact duplication of previous set-ups no matter how complex.

Model 6010 utilizes a combination of two measurement techniques in order to always achieve maximum resolution of up to nine digits from as low as 0.1 Hz to more than 125 MHz . The reciprocal technique is being used in low frequency measurement up to exactly 10 MHz where the measurement technique is changed to conventional measurement technique. Model 6010 measures frequency of the input signal with a minimum resolution of seven digits in one second of gate time. Option 1 adds a x10 multiplier to the internal time-base which increases the minimum number of digits that are displayed in one second to eight. Option 1 also adds a temperature compensated oscillator for improved reading stability and accuracy.

In the Model 6010 the traditionally featured decade steps of gate times is replaced by a more flexible variable gate time. This allows
a choice of 50 internally pre-selected gate intervals or any external gate interval which is applied to a rear panel BNC connector.
Internal gate ranges from $100 \mu \mathrm{~S}$ to 10 S . External gate expands this range to 1000 S . Trigger level may be selected manually or left to be automatically adjusted by the instrument to the optimum level, thus eliminating false triggering on unknown signals.

NOTE

This manual provIdes a complete description of all features of the 6010 Series. Therefore, several of the features which are described in the following paragraphs may not be installed in your instrument.

1-2. INSTRUMENT AND MANUAL IDENTIFICATION

These Tabor instruments are identified by a serial number which is located on the rear panel. The two most significant digits identify instrument modification. If this prefix differs from that listed on the title page of this manual, there are differences between this manual and your instrument. Technical corrections to this manual (if
any) are listed in the back of this manual on an enclosed MANUAL CHANGES sheet.

1-3. OPTIONS
There are several options available with Model 6010:
Option 1 - TCXO and clock multiplier
Option 2 - 1.3 GHz Channel C input
Option 3 - Analog output
Option 4 - GPIB interface
Options are field installable or may be ordered with new instruments from the factory. There are no software modifications necessary when installing the options. The instrument will automatically sense the presence of the new option and will then allow access to the parameters which are associated with the newly installed option.

1-4. SPECIFICATIONS

Instrument specifications are listed in Table 1-1. These specifications are the performance standards or limits against which the instrument is tested.

Abstract

NOTE All specifications in the following table apply after a warm-up period of 1 hour and at ambient temperature of 0 to $40^{\circ} \mathrm{C}$.

1-5. ACCESSORIES SUPPLIED

the 6010 Counter/Timer is supplied with ac mains power cable and an instruction manual.

INPUT CHARACTERISTICS

(Channel A and B)
RANGE
DC coupled : 0 to 125 MHz
AC coupled $1 \mathrm{M} \Omega \quad: 30 \mathrm{~Hz}$ to 125 MHz
$50 \Omega \quad: 1 \mathrm{MHz}$ to 125 MHz
SENSITIVITY (X1)
35 mV rms sine wave : 0 to 100 MHz
50 mV rms sine wave : 100 MHz to 125 MHz
100 mV p-p : 5 nS min pulse width
SIGNAL OPERATING RANGE
(X1)
(X10) : -50.0 V DC to +50.0 V DC
DYNAMIC RANGE (x1)
100 mV - $5 \mathrm{Vp}-\mathrm{p}$: 0 to 100 MHz
150 mV - $2.5 \mathrm{Vp}-\mathrm{p}: 100 \mathrm{MHz}$ to 125 MHz
COUPLING
INPUTS
IMPEDANCE
Separate
Common
SLOPE

LOW PASS FILTER
DAMAGE LEVEL (AC or DC)
$1 \mathrm{M} \Omega$ (X 1) : DC to $2 \mathrm{kHz}-200 \mathrm{~V}$ (DC + peak AC) 2 KHz to $100 \mathrm{KHz}-4 \mathrm{x} 10 \mathrm{E} 5 \mathrm{~V} \mathrm{rms}$ $\mathrm{Hz} /$ Freq. Above $100 \mathrm{KHz}-5 \mathrm{~V}$ rms
$1 \mathrm{M} \Omega$ (X 10) : DC to 20 kHz - 200 V ($\mathrm{DC}+$ peak AC) 20 kHz to $100 \mathrm{KHz}-4 \times 10 \mathrm{E} 6 \mathrm{~V}$ rms $\mathrm{Hz} /$ Freq. Above $100 \mathrm{KHz}-50 \mathrm{~V}$ rms
: X1 or X10 nominal, switchable

MANUAL ATTENUATOR

(Channel A and B)

TRIGGER LEVEL RANGE
(automatic mode) : -50.0 VDC to +50.0 VDC
FREQUENCY RANGE
DC coupled : 100 Hz to 125 MHz
AC coupled : 100 Hz to 125 MHz

NOTES

1. Auto trigger is disabled in the following functions: Totalize B and Frequency C.
2. Auto trigger function requires that a repetitive signal be present at the input connector.
3. Auto trigger is automatically enabled in the rise time measuring function.

Table 1-1. Model 6010 Specifications (continued)

```
AUTO ATTENUATION
    Mode : Automatically enabled with the Auto
    Trigger.
    x10 attenuator : Automatically enabled when either
    peak is greater than }\pm5.1\textrm{V}\mathrm{ or when
    the difference between maximum and
    minimum peaks exceeds 5.1 V.
    Minimum amplitude : 100 mV rms sine wave, 280 mV p-p
MANUAL TRIGGER LEVEL CHARACTERISTICS (Channel A and B)
RANGE
    (X1) : -5.00 VDC to +5.00 VDC
    (X10) : -50.0 VDC to +50.0 VDC
PRESET
    (X1) : 0.00 VDC
    (X10) : 00.0 VDC
RESOLUTION
    (X1) : 10 mV
    (X10) : 100 mV
```

```
SETTING ACCURACY
    (X1)
: }\pm\mathrm{ ( }35\textrm{mV}+3% of the reading
(X10)
```

```
: ( }350\textrm{mV}+3%\mathrm{ of the reading)
```

: (}350\textrm{mV}+3%\mathrm{ of the reading)
FREQUENCY A, B
Mode : Reciprocal below 10 MHz and when
EXT GATE mode or HOLD mode are
selected. Conventional above 10MHz.
Mode of operation is automatically
selected by the instrument. (10 MHz
above changes to }100\textrm{MHz}\mathrm{ with opt 1)

```

\section*{RECIPROCAL FREQUENCY MEASUREMENT CHARACTERISTICS}
```

Range LSD (1) Displayed	: 0.1 Hz to 125 MHz (see mode above). : $4 \times 100 \mathrm{nS} \times$ frequency
with option 1 installed	gate time. e.g min 7 digits in one second of gate time : $4 \times 10 \mathrm{nS} \times$ frequency
	gate time. e.g min 8 digits in one second of gate time
Resolution	$\begin{aligned} : & \pm \text { LSD } \pm \\ & \pm(1.4 \times \text { Trig error }(2)+2 \mathrm{nS}) \times \text { Freq } \end{aligned}$
Accuracy	: \pm resolution \pm Time Base Error (3) \times Freq

```

Table 1-1. Model 6010 Specifications (continued)

\section*{CONVENTIONAL FREQUENCY MEASUREMENT CHARACTERISTICS}

Range : 10 MHz to 125 MHz .
with option 1 installed : 100 MHz to 125 MHz .
LSD (1) Displayed : \(\frac{4}{\text { gate time }}\)
Resolution : \(\pm 1\) LSD
Accuracy \(: \pm 1\) LSD \(\pm\) Time Base error (3) x Freq
FREQUENCY C (available with option 2 only)
```

Mode : Reciprocal mode only
Range : 50 MHz to 1300 MHz
LSD(1) Displayed : Same as for Frequency A and B
Resolution : Same as for Frequency A and B
Accuracy : Same as for Frequency A and B

```

\section*{PERIOD A, TIME INTERVAL A to B}


\section*{PERIOD A - AVERAGED (*)}


Table 1-1. Model 6010 Specifications (continued)

\section*{TIME INTERVAL A to B - AVERAGED (*)}

Range
Pulse A : 5 nS to 10 S
T.I A to B \(\quad: \quad 0 \mathrm{nS}\) to \(10 \mathrm{~S} . \mathrm{A}\) and B signals must have the same repetition rate.
LSD (1) Displayed : \(\frac{5 \times 100 \mathrm{nS}}{\sqrt{\mathrm{N}}}\)
with option 1 installed : \(\frac{5 \times 10 \mathrm{nS}}{\sqrt{N}}\)
Resolution : \(\pm 1\) LSD
Accuracy \(\quad: \pm\) resolution \(\pm \frac{\text { Trig error (2) }}{V_{N}} \pm\)
\(\pm\) (Time Base error(3) x Time) \(\pm 2 \mathrm{nS}\)
Dead Time Stop to Start : 20 nS minimum
Number of Samples Averaged : \(N=\) gate time \(\mathbf{x}\) Frequency \(A\)

\section*{RISE/FALL TIME A - AVERAGED (*)}

Range
Fast Rate : 10 nS to 10 mS
Slow Rate : 10 nS to 25 mS
LSD (1) Displayed : Same as in TI A to B
Resolution : \(\pm 1\) LSD
Accuracy \(: \pm\) (TI A to B AVG accuracy) \(\pm\)
\(\pm \mathrm{TL}\) setting error(8) at \(10 \% \pm\)
\(\pm\) TL setting error (8) at 90\%
Number Of Samples Averaged
Fast Rate : N = 0.1 S x Frequency A
Slow Rate \(\quad: N=1 S \times\) Frequency \(A\)
Minimum Amplitude : \(500 \mathrm{mVp}-\mathrm{p}\)
Minimum Width at Peaks
of The Signal : 20 nS
Minimum Frequency
Fast Rate : 100 Hz
Slow Rate : 40 Hz
Input Mode
Trigger Level Mode
Rise Time : Automatically set to the 10\% and 90\%
Fall Time : Automatically set to the \(90 \%\) and \(10 \%\)
PHASE A to B - AVERAGED (*)

Range : 0 to \(360^{\circ} \mathbf{x}\) (1-20 nS x Freq A).
example: 0 to \(359.99^{\circ}\) at 1 KHz
0 to \(180.0^{\circ}\) at 25 MHz
Frequency Range \(\quad: 0.1 \mathrm{~Hz}\) to \(25 \mathrm{MHz} . A\) and \(B\) signals must have the same frequency.
LSD (1) Displayed
\(: \frac{2.5 \times 100 \mathrm{nS} \times 360^{\circ} \times(1+\sqrt{ } \mathrm{N})}{\text { gate time }}\) or \(0.01^{\circ}\), whichever is greater

```

 or 0.01', whichever is greater
 Resolution : \pm 1 LSD.
 Accuracy : \pm resolution }\pm2\textrm{nS x Freq A x 360
 \pm Trigger error(2) x Freq A x 360'
 Number of Cycles Averaged : N = gate time x Frequency A
Minimum Amplitude : 100 mV rms sine wave
(*) In Averaged measurements, no phase relation is allowed between the external source to the instrument's Time Base.

```

\section*{TOTALIZE B}

Gate Modes (*)
\begin{tabular}{|c|c|}
\hline Infinite & Totalizing on B indefinitely \\
\hline Totalize by A & Totalizing on \(B\) during pulse duration on A \\
\hline Totalize by AA & \begin{tabular}{l}
Totalizing on \(B\) between a pair of two consecutive transitions of the same direction on \(A\) \\
0 to 10E16 - 1
\end{tabular} \\
\hline range & 0 to 100 MHz \\
\hline Stop to Start(7) & 20 nS minimum between stop transition to the next start transition \\
\hline ayed & 1 count of channel B input signal \\
\hline n & 1 LSD \\
\hline
\end{tabular}

Resolution : 1 LSD
Accuracy
\begin{tabular}{ll} 
Infinite & \(:\) Absolute \\
Totalize by A & \(: \pm\) pulse rep rate \(B \times \operatorname{Trig}(2)\) error \(A\) \\
Totalize by AA counts \(B\) \\
: Same as for Totalize by \(A\)
\end{tabular}
(*) Direction of the gating transition is front panel selectable.

\section*{RATIO A/B}

Frequency Range
\begin{tabular}{ll}
A & \(: 0.1 \mathrm{~Hz}\) to 125 MHz \\
B & \(: 0.1 \mathrm{~Hz}\) to 125 MHz \\
& \(: \frac{4 \times \text { Ratio }}{\text { Freq A } \times \text { gate time }}\) \\
& \(: \pm\) LSD \(\pm \frac{\text { Trig error } \mathrm{B}(2) \times \text { Ratio }}{\text { gate time }}\) \\
& \(:\) Same as resolution
\end{tabular}

Table 1-1. Model 6010 Specifications (continued)
V PEAK A


\section*{DELAY}
```

 Function : Active only with Time Measurements
 First input transition opens the
 gate. Delay inhibites the consequent
 transitions.
 Modes
 Internal range
 through rear panel BNC.
 Preset position
 External range
 with option 1 installed
 GATE TIME
Modes : Internal through front panel
programming or externaly applied
through rear panel BNC.
Internal range : 100 \muS to 10 S or one period of
the input.
External range : 100 \mus to 1000 S. Ext gate not
available with Time measurements,
Totalize and 0 A to B
Preset position : 1 S
External gate delay(6) : < 10 \muS

```

\section*{EXTERNAL ARMING (TRIGGER)}
\begin{tabular}{|c|c|}
\hline Function & Arms the instrument when set to HOLD mode. \\
\hline Trigger Delay (5) & : \(<50 \mu \mathrm{~S}\) \\
\hline Minimum Pulse width & : \(10 \mu \mathrm{~S}\) \\
\hline
\end{tabular}

Table 1-1. Model 6010 Specifications (continued)

\section*{EXTERNAL INPUT - GATE, DELAY, ARMING}
\begin{tabular}{ll} 
Input & \(: T T L\) levels, via rear panel BNC \\
Input Impedance & \(: 1 \mathrm{~K} \Omega\) nominal \\
Logic & \(:\) Positive true
\end{tabular}

\section*{TIME BASE}
\begin{tabular}{ll} 
Frequency & \(: 10 \mathrm{MHz}\) \\
Aging Rate & \(:<5 \mathrm{X} 10 \mathrm{E}-7 /\) month \\
Stability & \(:<5 \mathrm{X} \mathrm{10E-6} ,\mathrm{0} \mathrm{to} 50{ }^{\circ} \mathrm{C}\) \\
Line Voltage & \(: 1 \mathrm{X} 10 \mathrm{E}-7\) for \(10 \%\) change (short term) \\
Clock IN/OUT & : Selected with an internal switch \\
External Time Base Input & \(:\) Rear Panel BNC accepts 10 MHz TTL \\
Time Base Out & \(: 10 \mathrm{MHz}\) approx 2 V from a \(51 \Omega\) source
\end{tabular}

\section*{GPIB INTERFACE}
\begin{tabular}{|c|c|}
\hline Programmable Controls & All front panel controls except POWER switch. \\
\hline Multiline Commands & DCL, LLO, SDC, GET, GTL, UNT, UNL, SPE, SPD \\
\hline Uniline Commands & IFC, REN, EOI, SRQ, ATN \\
\hline Interface Functions & SH1, AH1, T6, TE0, L4, LE0, SR1, RL1, PP0, DC1, DT1, C0, E1 \\
\hline Data Output Format Reading & With prefix 18 ASCII chracters plus terminator. Without prefix - 14 ASCII chracters plus terminator \\
\hline Gate/Delay time and trigger level & With prefix - 9 ASCII chracters plus terminat or. Without prefix - 5 ASCII chracters plus terminator \\
\hline Address selection & By front panel controls. Address is stored in a non-volatile memory. \\
\hline
\end{tabular}

\section*{GENERAL}


Table 1-1. Model 6010 Specifications (continued)
\(\left.\begin{array}{ll}\text { Display } & \begin{array}{ll}: & 9 \text { digits seven segments LED } 0.56 " \\ & \text { high. } 2 \text { digits for engineering }\end{array} \\ & \text { notations. Operator may select }\end{array}\right]\)

\section*{OPTIONS}

OPTION 1 - TCXO + x10 clock multiplier
Frequency : 10 MHz
Aging Rate : <1 X 10E -7 / month
Stability \(:<1 \times 10 \mathrm{E}-6,0\) to \(40{ }^{\circ} \mathrm{C}\)
Line Voltage : \(1 \times 10 \mathrm{E}-7\) for \(10 \%\) change (short term)
Clock IN/OUT : Selected with an internal switch
External Time Base Input : Rear Panel BNC accepts 1, 5 or 10 MHz TTL. Selected via an internal switch.
Time Base Out : 10 MHz approx 2 V from a \(51 \Omega\) source

\section*{OPTION 2 - FREQ C TO 1.3 GHz}

Range \(\quad: 50 \mathrm{MHz}\) to 1.3 GHz (1.5 GHz typically)
Sensivity

Input Impedance
: 25 mV rms to 1.0 GHz ;
50 mV rms to 1.3 GHz
Dynamic Range
: \(50 \Omega\) nominal
: 25 mV to 1 V rms up to 1.0 GHz ;
50 mV to 1 V rms up to 1.3 GHz
Coupling
Damage Level : DC to \(100 \mathrm{KHz}-15 \mathrm{~V}\) (DC + peak AC) 100 KHz to \(1.3 \mathrm{GHz}-5\) Vrms

Table 1-1. Model 6010 Specifications (continued)

\section*{OPTION 3 - ANALOG OUTPUT}
\begin{tabular}{|c|c|}
\hline Function & : Digital to analog converter, provides a high resolution analog output of any three conse-cutive ditits. \\
\hline Decade conversion & : Any 3 consecutive digits can be selected via front panel programming. \\
\hline Normal mode & : Output is directly proportional to display reading. 000 produces 0.00 Vdc. 999 produces 9.99 Vdc. \\
\hline Offset Mode & : Front panel programmed. Adds an offset to obtain analog recorder scale offset. \\
\hline Offset range & 0 to 9.00 Vdc in 1 V increments. \\
\hline Output & Through rear panel BNC connector \\
\hline Full scale deflection & 9.99 Vdc \\
\hline Accuracy/Nonlinearity & \(\pm 2 \mathrm{mV}\) \\
\hline Output impedence & \(1 \mathrm{~K} \Omega\) 1\% \\
\hline Settling time & \(<1 \mathrm{mS}\) after end of measurement. \\
\hline
\end{tabular}

\section*{DEFINITION OF TERMS}
(1) LSD: Unit value of least significant digit. Calculation should be rounded as follows 1 to \(<5 \mathrm{~Hz}\) becomes \(1 \mathrm{~Hz}, 5 \mathrm{nS}\) to \(<10 \mathrm{nS}\) becomes 10 nS etc.
(2) Trigger Error:
\[
\begin{aligned}
& \frac{\sqrt{ }(\text { ei2 }+ \text { en2) }}{} \begin{array}{l}
\text { Input slew rate at trigger point }
\end{array} \text { seconds rms } \\
& \text { Where: ei is the rms noise voltage of the counter's } \\
& \text { input channel ( } 250 \mu V \text { typ.) } \\
& \text { en is the rms noise of the input signal for } \\
& 125 \mathrm{MHz} \text { bandwidth. }
\end{aligned}
\]
(3) Time base error: Maximum fractional frequency change in time base frequency due to all errors: e.g aging, temperature, line voltage etc.
(4) Trigger Level Timing Error (x1):
\[
\begin{array}{lll} 
& \frac{18 \mathrm{mV}}{\text { Input slew rate at start }} \begin{array}{l}
\text { Input slew rate } \frac{18 \mathrm{mV}}{\text { trigger point }}
\end{array} \\
\text { trigger point }
\end{array} \quad \begin{aligned}
& \text { at } \\
& \text { trigep }
\end{aligned}
\]
(5) External arming ( trigger ) delay:Delay from the positive going slope of the arming signal to the internal gate open signal.
(6) External gate delay: Delay from the positive going slope of the gating signal to the internal gate open signal.
(7) Dead Time: Minimum time between measurement which the counter is busy in performing the measurement. The counter will not at this time respond to any input transition.
(8) Trigger Level Setting Error: (x1)
\(\frac{ \pm 3 \% \mathrm{Vp}-\mathrm{p}+35 \mathrm{mV}}{\text { Slew rate at trigger point [V/S] }}\)

This page intentionally left blank

\section*{SECTION 2}

\section*{INSTALLATION}

\section*{2-1. INTRODUCTION}

This section contains information and instructions necessary for the installation and shipping of the Model 6010 Counter/timer. Details are provided for initial inspection, power connection, grounding safety requirements, installation information, and repacking instructions for storage or shipment.

\section*{2-2. UNPACKING AND INITIAL INSPECTION}

Unpacking and handling of the counter requires only the normal precautions and procedures applicable to the handling of sensitive electronic equipment. The contents of all shipping containers should be checked for included accessories and certified against the packing slip to ascertain that the shipment is complete.

\section*{2-3. PERFORMANCE CHECKS}

The instrument was carefully inspected for mechanical and electrical performance before shipment from the factory. It should be free of physical defects and in perfect electrical order upon receipt. Check the instrument for damage in transit and perform the electrical procedures outlined in Section 5. If there is indication of damage or deficiency, see the warranty in this manual and notify your local Tabor field engineering representative or the factory.

\section*{CAUTION}

It is recommended that the operator be fully familiar with the specifications and all sections of this manual. Failure to do so may compromise the warranty and the accuracy which Tabor has engineered into your instrument.

\section*{2-4. POWER REQUIREMENTS}

The instrument may be operated from any one of the following sources: a. 103.5 to 126.5 Volts ( 115 Volts nominal) b. 207 to 253 Volts (230 Volts nominal).

The instrument operates over the power mains frequency range of 48 to 63 Hz . Always verify that the operating power mains voltage is the same as that specified on the rear panel voltage selector switch.

\section*{CAUTION}

Failure to switch the instrument to match the operating line voltage will damage the instrument and may void the warranty.

The instrument should be operated from a power source with its neutral at or near ground (earth potential). The instrument is not intended for operation from two phases of a multiphase ac system or across the legs of a single-phase, three-wire ac power system. Crest factor (ratio of peak voltage to rms) should be typically within the range of 1.3 to 1.6 at \(10 \%\) of the nominal rms mains voltage.

\section*{2-5. GROUNDING REQUIREMENTS}

To insure the safety of operating personnel, the U.S. O.S.H.A. (Occupational Safety and Health) requirement and good engineering practice mandate that the instrument panel and enclosure be "earth" grounded. All Tabor instruments are provided with an Underwriters Laboratories (U.L. and V.D.E) listed three-conductor power cable, which when plugged into an appropriate power receptacle, grounds the instrument. The long offset pin on the male end of the power cable carries the ground wire to the long pin of the Euro connector (DIN standard) receptacle on the rear panel of the instrument.

To preserve the safety protection feature when operating the instrument from a two-contact outlet, use a three-prong to two-prong adapter and connect the green lead on the adapter to an "earth" ground.

\section*{CAUTION}

To avoid operator shock hazard do not exceed the power mains voltage frequency rating which limits the leakage current between case and power mains. Never expose the instrument to rain, excessive moisture, or condensation.

\section*{2-6. INSTALLATION AND MOUNTING}

The instrument is fully solid state and dissipates only a small amount of power. No special cooling is required. However, the instrument should not be operated where the ambient temperature exceeds \(50{ }^{\circ} \mathrm{C}\), when the relative humidity exceeds \(80 \%\) or condensation appears anywhere on the instrument. Avoid operating the instrument close to strong magnetic fields which may be found near high power equipment such as motors, pumps, solenoids, or high power cables. Use care when rack mounting to locate the instrument away from sources of excessive heat or magnetic fields. Always leave 4 cm ( \(1.5 z i n c h e s\) ) of ventilation space on all sides of the instrument.

\section*{2-7. BENCH MOUNTING}

The instrument is shipped with plastic feet, tilt stand in place and ready for use as a bench or portable instrument. See outline drawing Figure 2-1 for dimensions.

\section*{2-8. RACK MOUNTING}

The instrument may be rack mounted in a standard 19 inch EIA rack. The instrument may be rack mounted in Rack Mount Kit option 6010-rack.

\section*{2-9. PORTABLE USE}

The instrument may be used in applications requiring portability. A tilt stand consisting of two retractible legs is provided with each unit.

2-10. SHORT TERM STORAGE
If the instrument is to be stored for a short period of time (less than three months), place cardboard over the panel and cover the instrument with suitable protective covering such as a plastic bag or strong kraft paper. Place power cable and other accessories with the instruemnt. Store the covered voltmeter in a clean dry area that is not subject to extreme temperature variations or conditions which may cause moisture to condense on the instrument.

2-11. LONG TERM STORAGE OR REPACKAGING FOR SHIPMENT

If the instrument is to be stored for a long period or shipped, proceed as directed below. If you have any questions contact your local Tabor field engineering representative or the Tabor Service Department at the factory.

If the original Tabor supplied packaging is to be used proceed as follows:
1. If the original wrappings, packing material, and container have been saved, repack the instrument and accessories originally shipped to you. If the original container is not available, one may be purchased through the Tabor Service Department at the factory.
2. Be sure the carton is well sealed with strong tape or metal straps.
3. Mark the carton with the model number and serial number with indelible marking. If it is to be shipped, show sending address and return address on two sides of the box; cover all previous shipping labels.

If the original container is not available, proceed as follows:
1. Before packing the unit, place all accessories into a plastic bag and seal the bag.
2. For extended storage or long distance shipping only, use U.S. government packing method II C and tape a two-unit bag of dessicant (per MIL-D-3464) on the rear cover.
3. Place a 13 cm (5 inch) by 30 cm ( 12 inch) piece of sturdy cardboard over the front panel for protection.
4. Place the counter into a plastic bag and seal the bag.
5. Wrap the bagged instrument and accessories in one inch thick flexible cellular plastic film cushioning material (per PPP-C-795) and place in a barrier bag (per MIL-B-131). Extract the air from bag and heat seal.
6. Place bagged instrument and accessories into a 250 mm ( 10 inch) x 360 mm ( 14 inch) \(\times 508 \mathrm{~mm}\) ( 20 inch) fiber board box (per PPP-B-636 type CF, class WR, variety SW, grade V3C). Fill additional spaces with rubberized hair or cellular plastic cushioning material. Close box in accordance with container specifications. Seal with sturdy water resistant tape or metal straps.
7. Mark container "DELICATE INSTRUMENT", "FRAGILE", etc. Mark instrument model and serial number and date of packaging. Affix shipping labels as required or mark according to MIL-STD-129.

\begin{abstract}
NOTE
If the instrument is to be shipped to Tabor for calibration or repair, attach a tag to the instrument identifying the owner. Note the problem, the symptoms, and service or repair desired. Record the model and serial number of the instrument. Show the work authorization order as well as the date and method of shipment. ALWAYS OBTAIN A RETURN AUTHORIZATION NUMBER FROM THE FACTORY BEFORE SHIPPING THE INSTRUMENT TO TABOR.
\end{abstract}

\section*{2-12. SAFETY}

Be fully acquainted and knowledgeable with all aspects of this instruction manual before using the instrument to assure operator safety and protection against personnel shock hazard.


Figure 2-1. Model 6010 outline dimensions.

\section*{SECTION 3}

\section*{BASIC COUNTER/TIMER OPERATION}

\section*{3-1. INTRODUCTION}

Model 6010 operation is divided into two general categories: basic bench operation, and IEEE-488 operation. Basic bench operation, which is covered in this section, consists of using the Model 6010 to perform basic frequency and time measurements. IEEE programming can also be used to greatly enhance the capability of the instrument in applications such as automatic test equipment. These aspects are covered in details in Sections 3 and 4.

\section*{3-2. FRONT PANEL FAMILIARIZATION}

The front panel layout of the Model 6010 is shown in Figure 3-1. The front panel is generally divided into three sections: controls, connectors, display and indicators. The following paragraphs describe the purpose of each of these items in details.

\section*{3-2-1. CONTROLS}

All the front panel controls except POWER are momentary contact switches. Many controls include an annunciator light to indicate the selected mode. Controls which do not have an annunciator light, when pressed, will cause an immediate reaction on the display. The controls are divided into functional groups for easier operation. Front panel controls may be divided into functional groups: power, mode, functions, display modifiers and input setting.
1. POWER - The POWER switch controls the AC power to the instrument. Pressing and releasing the switch once turns the power on. Pressing and releasing the switch a second time turns the power off.
2. MODE - There are two push-buttons in the MODE section: clear/ local and 2nd. The 2nd push-button is used to select secondary functions. All functions which are marked on the panel with yellow are associated to the 2nd function. Pressing the 2 nd push-button will cause the instrument to display the following reading:
2nd ?

The reading is blinking indicating that the counter is ready for a consequent press of another push-button which has a second function. Pressing the 2nd push-button again will restore normal operation. The clear/local push-button when pressed, and the instrument was in remote operation (but not in remote lockout condition LLO), restores local operation. When the instrument is in local operation, pressing this push-button clears the display and arms the counter for the next measurement cycle.
3. FUNCTION - The three FUNCTION push-buttons control the type of measurement. Each push-button is used to select one of three functions.

Figure 3-1. Front Panel Controls, Indicators and Connectors


Page 3-2

FREQ. - The FREQ push-button places the instrument in one of three frequency measurement functions: Frequency A, Frequency B or Frequency C. Consecutive pressing of the FREQ push-button will toggle between frequency A, Frequency B and Frequency C functions.

TIME - The TIME push-button sets the Model 6010 up to measure one of three time measurement functions: Period A, Rise Time A or Time Interval A to B. Consecutive pressing of the TIME push-button will toggle between these three functions.

RATIO - The RATIO push-button places the instrument in one of three ratio measurement functions: Totalize \(B\) (infinite, by \(A\) or by \(A A), A / B\) or \(\theta A\) to \(B\). Consecutive pressing of the FREQ push-button will toggle between Totalize \(B, A / B\) and \(\theta A\) to \(B\) functions.
4. DISPLAY/MODIFY - The two DISPLAY/MODIFY push-buttons modify the display from normal frequency, time or ratio reading to another reading such as trigger level, gate time, totalize mode, \(V\) peak mode or delay time.
5. INPUTS - There are 5 push-buttons at the INPUTS section which control the signal conditioning for Channels A and B. Push-buttons control attenuation, coupling, slope, separate or common inputs and low pass filter to suppress high frequency noise.
6. VERNIER - The two push-buttons in the VERNIER section are used as a digital potentiometer. The VERNIER operates in conjunction with the following functions: Trigger level, Gate time, Delay time, Digits, Address, Totalize mode, Vpeak mode, Analog out, and Offset. The two push-button also set these parameters to a pre-set position.
7. SET-UPS - There are two push-buttons in the SET-UPS section. One is use to store a complete front panel set-up. The other button is used to recall a stored set-up.

\section*{3-2-2 CONNECTORS}

The connectors are used to connect the Model 6010 to the signal to be measured.
1. CHANNEL A - The CHANNEL A connector is used when making measurement which are related to channel A.
2. CHANNEL B - The CHANNEL B connector is used when making measurements which are related to channel \(B\).
3. CHANNEL C - The CHANNEL \(C\) terminal is used for high frequency measurements, up to 1.3 GHz with a \(50 \Omega\) input impedance. Although this terminal is always installed, the internal circuitry to operate this function is optional and may not be installed in this model.

\section*{3-2-3. DISPLAY AND INDICATORS}
1. DISPLAY - The function of the display is to show the result of the processed measurement. The display consists of a 9 digit mantissa and a single digit exponent. The exponent uses a leading minus to
indicate negative values. The sign on the exponent changes to + for zero or positive values. The display is also used to indicate information other than the measurement such as the gate time or the trigger level.
2. INDICATORS - There are 30 indicators located on the front panel. The indicators are used to point at a selected function or signal to the user that the instrument is set to a special function like auto trigger or remote operation.

\section*{3-3 REAR PANEL FAMILIARIZATION}

Figure 3-2 shows the rear panel layout of the model 6010.


Figure 3-2. Rear Panel Connectors

\section*{3-3-1. CONNECTORS AND TERMINALS}
1. AC RECEPTACLE - Power is applied through the supplied power cord to the 3-terminal AC receptacle. Note that the selected power supply voltage is marked on the rear panel above the line voltage selector switch.
2. LINE SWITCH - The LINE VOLTAGE SELECTOR switch selects one of the primary voltage which are marked on both sides of the switch.
3. LINE FUSE - The line fuse provides protection for the AC power line input. For information on replacing this fuse, refer to Section 5.
4. IEEE-488 CONNECTOR - This connector is used to connect the instrument to the IEEE-488 bus.
5. TRIGGER LEVEL OUTPUTS - These three terminals are used for monitoring, by an external DMM or oscilloscope, the DC voltage comming from channels A and B trigger level circuits.
6. CLOCK - This BNC connector is used to output the internal clock as a reference to another instrument. The same input may be connected to an external reference. The function of this input/output is marked above the connector.
7. EXT. ARMING/GATE/DELAY - A BNC connector which may receive one of three signals ; arming pulse, external gate signal or external delay pulse. This input is useful when gate or delay times other then the internal times are required or to take one reading with model 6010 in synchronization with other equipment.
8. ANALOG OUTPUT - A BNC connector which output a voltage which is equivalent to the display readout. This voltage may then be connected to a chart recorder etc.

\section*{3-4. POWER-UP PROCEDURE}

The basic procedure of powering up the Model 6010 is described below.
1. Connect the female end of the power cord to the AC mains receptacle on the rear panel. Connect the other end of the power cord to a grounded AC outlet.

\section*{CAUTION}

\begin{abstract}
Be sure the power line voltage agrees with the indicated value on the rear panel of the instrument. Failure to heed this warning may result in instrument damage.
\end{abstract}
\(\boldsymbol{*} \boldsymbol{*} \boldsymbol{*}\)
** WARNING **
*************

The instrument is equipped with a 3-wire power cord designed to be used with grounded outlets. When the proper connections are made, the instrument chassis is connected to the power line ground. Failure to use a properly grounded outlet may result in personal shock hazard.
2. Turn on the power by pressing and releasing the POWER switch on the front panel.
3. The instrument will then begin operation by performing a display and indicator test which takes approximately one second. All mode and IEEE indicators will turn on and the display will appear as follows:
\[
\text { 8.8.8.8.8.8.8.8.8. } \pm 8 \text {. }
\]
4. To verify that all display segments are operating, compare the instrument's display with the above during the test.
5. Following the display test, the instrument proceeds by
displaying the options installed. When no option is installed, the instrument will display the following message:

6010
If option 1 (TCXO and time base multiplier) is installed, the instrument will display the following message:

6010-1
If option 2 ( 1.3 GHz input) is installed, the instrument will display the following message:

6010-2
If option 3 (analog output) is installed, the instrument will display the following message:

6010-3
If option 4 (GPIB interface) is installed, the instrument will display the following message:

6010-4
If more than 1 option is installed, the instrument will add on the right the number of the installed option. For example, if options 1, 3 and 4 are installed, the instrument will display the following message:

6010-1.3.4
6. Once the model number and the installed options are displayed, the instrument will perform ROM and RAM tests. If all these tests are passed, the display will show the software revision level for about 1 second similar to the example below:

\section*{SoFt 1.1}
7. following the software revision level, the instrument will display the previously selected IEEE primary address which is set through front panel programming and stored in the non-volatile memory. For example, with the set to address 25 , the display will show:

IE Adr 25
8. Following these display messages, the instrument will go into the normal operating mode and begin displaying readings. The instrument will be set to the previously programmed front panel set-up.

\section*{3-5. SOFTWARE RESET}

One, who is not yet fully familiar with the front panel operation of the Model 6010, may find himself locked in a "dead-end" situation where nothing operates the way it should. The fastest way to restore the counter to a known condition is by resetting the instrument's software. This can be done by pressing the 2 nd push-button and then pressing the DCL push-button (second function to the RCL push-button). The instrument will be then be set to it's factory selected default. Table 3-1 summarizes these defaults.

Table 3-1. Default States After Software Reset
\begin{tabular}{ll} 
FUNCTION & DEFAULT STATE \\
\hline Function & Frequency A \\
Display/Modify & Normal reading \\
Gate/Delay Time & 1 Sec \\
Trigger Levels A and B & 0.00 V \\
Coupling & DC \\
Slope & Positive going \\
Attenuators & Off \\
Filters & Off \\
Common/Separate & Separate \\
Averaging & Off \\
Auto Trigger & Off \\
Delay & Off \\
Sampling Rate & Normal - 3 reading per second \\
V Peak A Measuring Rate & Fast \\
Totalize mode & Infinite \\
Displayed digits & 9 \\
Analog output & 3 LSD \\
Analog output offset & 0.00 V \\
IEEE Status & Local \\
\hline
\end{tabular}

NOTE

> Software reset has no effect on any of the front panel set-ups which were previously stored in the memory locations 0 through 9 . The software reset also has no effect on the programmed GPIB address.

\section*{3-6. DISPLAY MESSAGES}

The Model 6010 has several display messages associated with basic front panel operation. The instrument has also a few front panel indications that an operating error associated with front panel programming was detected. These messages are discussed in the following. Note that the instrument has a number of additional display messages associated with IEEE-488 programming.

\section*{3-6-1. NO BATTERY ERROR MESSAGE}

The non-volatile memory stores complete 10 front panel set-ups. The
same non-volatile memory, in case of power failure or upon regular power-up procedure, is responsible for reconstructing the last front panel set-up. The non-volatile memory is backed-up by a built-in battery which should last approximately 3 years. Losing the back-up power will cause a loss of the preselected set-ups. When back-up power is lost the instrument will display the following message:

\section*{no bAtt.}

This message will be displayed for about 2 seconds in conjunction with the alarm signal; indicating that the back-up power test on the non-volatile memory has failed and that the previously elected set-ups are lost.

3-6-2. IEEE-488 ERROR MESSAGES
The counter incorporates a number of display messages which are associated with errors through the GPIB interface programming. These messages are discussed in detail in Section 4 of this manual. However, there is one message which should be explained at this point because it may interfere with front panel operation. A remote enable or a device dependent command sent to the counter through the bus will turn on the REMOTE light and enable remote operation. In this case, all front panel push-buttons except LCL are disabled. An attempt to press one of these push-buttons will cause the following message to be displayed:

\section*{PrESS LcL}

This message indicates that the instrument will ignore any front panel programming sequence unless the LCL push-button is pressed and the REMOTE light turns off.

\section*{3-6-3. ERROR INDICATION}

There are several error indications that are caused by either an incorrect front panel programming or insufficient input level conditioning which is otherwise required by the instrument for normal signal processing. These indications are either visible (blinking LED) or audible (beeper) and are described in the following.
1. AUDIBLE ALARM - The AUDIBLE ALARM will sound when attempting an incorrect sequence of front panel programming. This could occur under the following conditions:
1. Any two front panel push-buttons are pressed simultaneously (except the two VERNIER push-buttons).
2. The instrument is in FREQ or RATIO or TIME AVG function and
the operator attempts to turn the delay on.
3. The instrument is in FREQ or RATIO function and the operator attempts to turn the AVG function on.
4. Option 3 (analog output) is not installed and the operator attempts to access parameters which are associated with the analog output function.
5. The instrument is in remote condition (REOMTE LED on) and any
front panel push-button except LCL is pressed.
6. The VERNIER push-buttons were pressed and the instrument was not in DISPLAY/MODIFY mode of operation.
7. The instrument was in DISPLAY/MODIFY mode of operation and the VERNIER UP or DOWN push-buttons were pressed continuously until a parameter limit was reached. Parameter limits are summarized in Table 3-2.

Table 3-2. Front Panel Programming Limits
\begin{tabular}{llcc} 
FRONT PANEL & & & \\
NOMENCLATURE & PARAMETER & LOW LIMIT & HIGH LIMIT \\
\hline & & & \\
TL A & Trigger Level A (x1) & -5.00 & +5.00 \\
TL B & Trigger Level B (x1) & -5.00 & +5.00 \\
GT & Gate Time & \(100 \mu \mathrm{~S}\) & USER GATE \\
DLY & Delay Time & \(100 \mu \mathrm{~S}\) & USER DELAY \\
DIGITS & No of displayed digits & 3 & 9 \\
ADRS & GPIB address & 0 & 30 \\
A.OUT & Analog Out resolution & LSD & MSD \\
OFST & Analog Out Offset & 100 & 900 \\
\hline
\end{tabular}
2. GATE ERROR - The gate error is indicated on the front panel by the GATE LED. This error will occur when the counter is in FREQ or TIME AVG function and when the signal was removed from the input connector in the middle of the measurement process or when a radiated random noise was sensed by the input circuitry. The GATE LED will then blink once but no result will be registered on the display.
3. GATE TIME ERROR - The gate time error is indicated on the front panel by the GT LED. The gate time error will occur in FREQ or TIME AVG functions when the period of the input signal is larger than the period of the gate time. The gate error will also occur in \(\theta\) A to \(B\) function when the gate time is not sufficient to permit the minimum resolution of \(1 \varnothing\). When one of the conditions above occurs, the gate time LED (GT) will blink for a couple of times and then resume a search routine. This sequence will repeat itself until a proper signal is found or until the gate time was readjusted to satisfy the required conditions.
4. TRIGGER LEVEL ERROR - The trigger level error will occur when the instrument is set to AUTO TRIG, RISE/FALL TIME or V PEAK A modes and the input signal is either absent or below the specified auto trigger limits. The trigger level LED (either TL A or TL B) will then blink, for a couple of times, and then resume a search routine. This sequence will repeat itself until a signal has been found or until the auto trigger mode was turned off.

\section*{3-7. CONTROL SELECTION}

Selecting the various front panel operating modes is simply a matter of pressing, once or twice, the appropriate push-button as described in the following paragraphs.

\section*{3-8. SELECTING A FUNCTION}

The Model 6010 must be set up for the proper measuring function with one of the three Function push-buttons. There are 15 different available functions in the FUNCTION block summarized in the following. To simplify the operating instruction for these functions, the functions are divided in the following table into three operational groups.

\section*{FUNCTIONS SUMMARY}


The letter after the function indicates the input connector where this measurement may be performed. For example, FREQUENCY C can only be measured if the signal is applied to Channel \(C\) input connector or \(V\) PEAK A can only be measured at the Channel A input connector. Some functions require that both Channel \(A\) and \(B\) be connected for a successful measurement - functions like Time Interval A to B or Totalize B by A. In some applications, the common function allows to perform measurements, which normally require connection to Channel \(B\), by connecting the cable to Channel A only.

Selecting a function from the first group is described in the following:
1. First bring the Model 6010 to a known state as described in paragraph 3-5. This is done by pressing first the 2 nd push-button and then pressing the DCL push-button. The instrument will then default to a factory pre-selected state and the light next FRQ A will illuminate; indicating that Frequency \(A\) function is now selected.
2. To select Frequency B press the FREQ push-button once. The light next to \(F R Q\) B illuminates; indicating that Frequency \(B\) is now selected.
3. To select Frequency \(C\) press the FREQ push-button again. The light next to FRQ C illuminates; indicating that Frequency \(C\) is now selected. Note that this procedure assumes that option 2 (1.3 GHz Channel C is installed)
4. To select Period A press the TIME push-button once. The light next to PER A illuminates; indicating that Period A is now selected.
5. To select Rise A press the TIME push-button again. The light next to RISE A illuminates; indicating that RISE TIME A is now selected.
6. To select Time Interval A to \(B\) press the TIME push-button again. The light next to TI A to \(B\) illuminates; indicating that Time Interval A to B is now selected.
7. To select Totalize B press the RATIO push-button once. The light next to TOT B illuminates; indicating that Totalize B is now selected.
8. To select Ratio A/B press the RATIO push-button again. The light next to \(A / B\) illuminates; indicating that Ratio \(A / B\) is now selected.
9. To select \(\theta\) A to \(B\) press the RATIO push-button again. The light next to \(\theta\) A to \(B\) illuminates; indicating that \(\theta\) A to \(B\) is now selected.

Selecting a function from the second group is described in the following:
10. To select Period Averaged A press the TIME push-button until the light next to PER A illuminates. Press the 2nd push-button and then press the AVG push-button (second function to the TIME button). Observe that the AVG light illuminates; indicating that the Period Averaged A function is now selected.
11. To select Time Interval Averaged \(A\) to \(B\) press the TIME pushbutton until the light next to \(T I A\) to \(B\) illuminates. Press the 2nd push-button and then press the AVG. push-button (second function to the TIME button). Observe that the AVG light illuminates; indicating that the Time Interval Averaged A to B function is now selected.

\section*{NOTE}

The averaging function, once it is selected, will automatically turn on whenever a TIME measuring function is selected. For example, Selecting PER A averaged turns the AVG light on . Changing the selected function to FRQ A will turn the AVG light off. Re-selecting one of the TIME functions will automatically turn the AVG light on.

Selecting a function from the third group requires additional operations and is described in the following:
12. To select Totalize B by A function press the RATIO push-button until the light next to TOT B illuminates. The counter is now set to totalize indefinitely. To select the Totalize B by A function press the GT push-button in the DISPLAY/MODIFY group and observe that the reading on the display is as follows:

\section*{tot InF}

This reading indicates that the instrument is set to Totalize infinitely. Now press the VERNIER push-button once and observe that the display reading is changed to the following:

This reading indicates that the instrument is now set to Totalize at \(B\) with \(A\) serving as the gating signal. Press the GT push-button again. The instrument is now ready to perform the required function.
13. To select Totalize B by AA function repeat the procedure as described above. Pressing the VERNIER UP push-button will change the display reading as follows:
tot bY AA
This reading indicates that the instrument is now set to Totalize at \(A\) with a pair of transitions at \(A\), having the same direction, serving as the gating signal. Press the GT push-button again. The instrument is now ready to perform the required function.
14. The V Peak A function has two measurement rates: Fast - for frequencies above 100 Hz and Slow - for the range of 40 Hz to 10 MHz . Note that the instrument, after DCL defaults to Fast rate. Selecting the measurement rate is described later in this manual.

\section*{3-9. SELECTING GATE AND DELAY TIME}

The Model 6010 may be operated in the preset gate time or delay time of one second or one of 50 increments which are factory selected. When selecting the gate time, the instrument will move up or down one gate time each time the UP or DOWN push-button is pressed. The present gate time may be noted on the display by pressing the GT / DLY push-button.

The gate times may only be selected in conjunction with frequency, time averaged, ratio \(A / B\) and \(\theta A\) to \(B\) measurements.

The gate time may be selected as follows:
1. Select a frequency measurement function.
2. Press the GT / DLY push-button. The GT light will turn on and the instrument will display the following message:

1

This reading indicates the selected gate time in seconds.
3. To change the gate time press the VERNIER UP or DOWN pushbuttons. Pressing the UP push-button will increase the gate time. Conversely, pressing the DOWN push-button will decrease the gate time. Holding in the Up or Down push-buttons for more than 1 second, causes the instrument to increment or decrement continuously.
4. Pressing the UP push-button when the instrument was at a gate time of 10 seconds will force the instrument into a USER GATE mode. This mode requires an external gating signal. Operating the counter with an external gate is explained later in this section.
5. Pressing the UP and DOWN simultaneously will change the gate time to a preset value of 1 Sec .
6. To resume normal display operation, press the GT /DLY pushbutton. The GT light will turn off and the instrument will be ready to perform measurements with the newly selected gate time. Table 3-1 lists the GATE/DELAY Times which are available.

Table 3-3. GATE/DELAY DETERMINATION
\begin{tabular}{llllll}
\(100 \mu \mathrm{Sec}\) & 1 mSec & 10 mSec & 100 mSec & 1 Sec & 10 Sec \\
\(200 \mu \mathrm{Sec}\) & 2 mSec & 20 mSec & 200 mSec & 2 Sec & User Gate/ \\
\(300 \mu \mathrm{Sec}\) & 3 mSec & 30 mSec & 300 mSec & 3 Sec & User Delay \\
\(400 \mu \mathrm{Sec}\) & 4 mSec & 40 mSec & 400 mSec & 4 Sec & \\
\(500 \mu \mathrm{Sec}\) & 5 mSec & 50 mSec & 500 mSec & 5 Sec & \\
\(600 \mu \mathrm{Sec}\) & 6 mSec & 60 mSec & 600 mSec & 6 Sec & \\
\(700 \mu \mathrm{Sec}\) & 7 mSec & 70 mSec & 700 mSec & 7 Sec & \\
\(800 \mu \mathrm{Sec}\) & 8 mSec & 80 mSec & 800 mSec & 8 Sec & \\
\(900 \mu \mathrm{Sec}\) & 9 mSec & 90 mSec & 900 mSec & 9 Sec &
\end{tabular}

\section*{NOTE}

To prevent operator error an internal audible alarm is provided. This alarm sounds whenever a limit is reached. (e.g low limit of \(100 \mu \mathrm{Sec}\) ).

The delay time may only be selected in conjunction with non averaged time measurement.

To select the delay time proceed as follows:
1. Select a non-averaging time measurement function.
2. Press the GT / DLY push-button. The DLY light will turn on and the instrument will display the following message:

1
This reading indicates the selected delay time in seconds.
3. To change the delay time press the VERNIER UP or DOWN pushbuttons. Pressing the UP push-button will increase the delay time. Conversely, pressing the DOWN push-button will decrease the delay time. Holding in the Up or Down push-buttons for more than 1 second, causes the instrument to increment or decrement continuously.
4. Pressing the UP push-button when the instrument was at a delay time of 10 seconds will force the instrument into a USER DELAY mode. This mode requires an external delay signal. Operating the counter with an external delay is explained later in this section.
5. Pressing the UP and DOWN simultaneously will change the delay time to a preset value of 1 Sec.
6. To resume normal display operation, press the GT /DLY pushbutton. The DLY light will turn off and the instrument will be ready to perform measurements with the newly selected delay time. Table 3-1 lists the GATE/DELAY Times which are available.

\section*{3-10. SETTING TRIGGER LEVELS}

There are two trigger level push-buttons associated with each Channel A (TL A) and Channel B (TL B). The VERNIER push-buttons, when operated in conjunction with \(T L A\) or \(T L B\), set the signal voltage level that will trigger the instrument.

To set the trigger levels proceed as follows:

\section*{NOTE}

The procedure for setting the trigger level is identical for Channels A and B. Access to TL A is possible only in conjunction with functions that relate to Channel A. Selecting a function which relates to Channel B will enable an access to \(T L\) B.
1. Using the procedure which is described above, set the instrument to Frequency A function. If other front panel lights illuminate, reset the counter using the software reset procedure which is described in paragraph 3-5.
2. Press the TL A push-button. The TL A and VOLTS indicators will turn on and the display will read as follows:
\[
0.00
\]

This reading indicates the selected trigger level in units of volts.
3. To set a positive trigger level press the VERNIER UP pushbutton. Holding in the UP or DOWN push-buttons for more than 1 second, will cause the instrument to increment or decrement continuously. To set a negative trigger level press the VERNIER DOWN push-button until the desired level has been reached.

\section*{NOTE}

Pressing the VERNIER UP or DOWN push-buttons, when the limits of +5.00 or - 5.00 respectively have been reached, will sound an audible alarm.
4. Simultaneously press the two VERNIER push-buttons and note that the display reading resets to 0 .
5. Press the TL A push-button. The indicator light will turn off and the instrument will return to the previous measurement state.
6. To set the trigger level for both Channels \(A\) and \(B\), select \(a\) function which involves both inputs (e.g ratio \(A / B, \theta\) A to \(B\), time interval A to B or totalize B by A). Pressing the TL push-button once will turn the \(T L A\) light on; indicating that the instrument displays the trigger level for Channel A. A second consecutive press will turn the TL B light on; indicating that the instrument displays the trigger level for Channel B. A third push will turn TL B light off. The instrument will then resume normal operation.

\section*{3-11. SETTING INPUT CONDITION CONTROLS}

A proper set-up of the input controls will ensure proper operation of the instrument. There are five push-buttons which control the input. These push-buttons are common to both Channels A and B.

Changing one of the input setting controls is simply a matter of pressing the required push-button. There are 5 lights for each input channel which are associated with each of the five controls.

To set input condition controls for Channel A proceed as follows:
1. Set the instrument to operate at one of the following functions: FRQ A, PER A, RISE A or V Peak A.
2. To select the required coupling mode press the AC push-button. Coupling is DC when light is off. When the light is on the coupling to the instrument is AC.
3. To change the slope that the instrument will trigger on, press the SLOPE push-button. If the light is off the counter will trigger on the positive edge of the input signal. If the light is on the counter will trigger on the negative going edge. Changing the slope in the RISE A function converts this function to FALL A.
4. When the signal exceeds the specified dynamic range of the input, attenuation is required. To attenuate the signal press the x10 push-button. The input signal will be attenuated by a factor of 10 when light is on. When light is off, the input signal will not be attenuated.
5. In low frequency measurements where the frequency range is below 100 KHz , the use of a filter is recommended to attenuate high frequency signals which may interfere with the measurement. To apply a low pass filter press LPF push-button. Filter is on when light is on. The filter is not activated when the light is off.

To set input condition controls for Channel B proceed as follows:
1. Set the instrument to operate in one of the following functions: FRQ B or TOT B.
2. use the same procedure as described above for Channel A.

To set input condition controls for both Channels A and B proceed as follows:
1. Set the instrument to operate in one of the following functions: Time Interval A to B, Ratio A/B, í A to B, TOT B by A or TOT B by AA.
2. To select the AC coupling mode for Channel A, press the AC pushbutton once. The AC A light will illuminate; indicating that Channel A is now ac coupled. Pressing the AC push-button again will turn the AC A light off but AC B light turns on; indicating that Channel A is dc coupled and Channel \(B\) is ac coupled. Pressing the button once more, turns both AC A and AC B light on; indicating that both channels are now ac coupled. Pressing the same push-button again will turn both light off. This now indicates that both channels are set to dc coupling mode.
3. use the same procedure to set the slopes, attenuation, and filtering.
4. The Common push-button permits to measure functions, which involves both Channels \(A\) and \(B\), using a common input through the Channel A input connector. Set the Model 6010 to operate in the Common

A mode by pressing the COMMON push-button. The light next to Common will illuminate; indicating that the Common function is now active.

\section*{3-12. SELECTING THE NUMBER OF DISPLAYED DIGITS}

A major advantage of Model 6010 is the capability to display a fixed number of digits regardless of the frequency of the signal. For example, with a one S gate time, the Model 6010 is capable of displaying a minimum of 8 digits. This however, may turn to a disadvantage when measuring a frequency of a relatively unstable signal in which just the most significant digits are stable and the least significant digits are "jumping around" with no significant meaning. Model 6010 is designed in such a way that it truncates the unstable least significant digits, while still preserving the full performance of the Model 6010. To select the number of displayed digits proceed as follows:
1. Press the 2nd push-button. The instrument will prompt the following message:
2nd ?
2. Press the DIGITS push-button (second function to AC A). The instrument will now display the following:
x diGit

Where \(x\) is the selected number of digits and could range from 3 to 9 digits.
3. Use the VERNIER UP to increase the number of the displayed digits. Conversely, pressing the VERNIER DOWN decreases this number.
4. Pressing the VERNIER UP and DOWN simultaneously, presets \(x\) to 9.
5. To return to normal operation of the Model 6010 simply press and release the ENT push-button (second function to STO). The instrument will than display the processed measurement with the programmed number of digits.

\section*{NOTE}

Selecting five digits to be displayed, instead of nine will eliminate the four least significant digits and will move the entire display to the right by four places. An example of a normal display reading, and the same display reading with five digits of resolution is given as follows.

Display reading with 9 digits:
\[
1.23456789
\]

Display reading with selected 5 digits:
\[
1.2345
\]

\section*{NOTE}

Under certain circumstances, it is possible that the Model 6010 will display less than nine digits. This may occur
when the selected gate time is very small. In that case, the instrument will override the function of the selected number of digits and will display only as many digits as it can. When gate time is increased, Model 6010 will again limit the number of displayed digits to the selected value.

\section*{3-13 SELECTING MEASUREMENT RATE}

There are three measurement rates which are available on the Model 6010. Only two measurement rates are accessible through the front panel: Normal rate of about 3 readings per second and single cycle (hold). The third measurement rate is accessible only via the rear panel IEEE-488 bus and will be discussed in further details in Section 4. Refer to the front panel HOLD indicator: The HOLD light determines the rate of measurement. When the indicator is off, the instrument is in normal measurement rate.

To select the measurement rate proceed as follows:
1. Press the 2nd push-button and then press the HOLD push-button (second function to RATIO). The HOLD light will turn on; indicating that the instrument is now armed for a single-shot measurement cycle. Arming is explained in the following.
2. To return to normal measurement rate, press the 2nd push-button and then the HOLD push-button. The HOLD light will turn off; indicating that the instrument is now set to accept and process readings at a normal rate.

\section*{NOTE}

The measurement rate is gate time dependent. The Model 6010 can process 3 readings in one second when the gate time is set to below 100 mS .

\section*{3-14 ARMING}

Arming allows a measurement to be triggered by and external arming signal or by the input signal. The Model 6010 may be armed to take readings in four ways:
1. Continuously armed by the input signal in the normal mode.
2. With the front panel CLR push-button when the instrument is in HOLD mode.
3. Through an arming pulse applied to the rear panel EXT. INPUT connector when the instrument is in the HOLD mode.
4. With commands given over the IEEE-488 bus as described in Section 4. This section covers front panel and external arming in detail.

3-14-1 Continuous Arming With the Input Signal
When the instrument is not in the hold mode and there is no signal present at the input terminals, the instrument will stay in the idle state and the GATE light will not flash. An input signal with the correct dynamic range and correct input control setting, will initiate
a measurement cycle and the gate light will flash every time the internal gate opens. There is no special procedure to set the Model 6010 up for continuous arming. The continuous arming mode is especially useful in analyzing the content of a burst.

\section*{3-14-2 Front Panel Arming.}

Front panel arming is done with the CLR push-button. To use front panel arming perform the following steps:
1. Enter the hold mode using the procedure described in paragraph 3-13. The HOLD light will turn on and the gate light will cease flashing; indicating that the instrument is in one-shot arming mode. The display will zero and no reading is processed until an arming stimulus is applied.
2. To trigger a single reading, press and release the CLR pushbutton. The instrument will be ready to take and process the next reading.
3. To arm the instrument for a new measurement, press the CLR pushbutton. The display will zero and a new measurement will be processed.
4. To remove the instrument from the one-shot arming mode, turn the hold function off by pressing in sequence 2nd and HOLD push-buttons.

\section*{3-14-3 External Arming}

External arming operates much like front panel arming except for the arming stimulus itself. In this case the arming stimulus is applied to the rear panel EXT. INPUT connector. The input arming pulse must conform to TTL levels. To use external arming, proceed as follows:
1. Place the instrument in the hold mode using the procedure described in paragraph 3-13. Note that the GATE light will cease flashing; indicating that the instrument is in one-shot arming mode. The instrument will cease processing readings while it is waiting for the arming signal.
2. Connect the external arming source to the rear panel EXT. INPUT connector. The first positive going transition at the EXT INPUT connector will arm the Model 6010 for taking and processing the next available signal. Note that after each positive going transition of the arming signal, the numeric display will be set to read zero until the next data is processed and displayed. The Model 6010 will ignore any transitions at this input when the gate is open.
3. To remove the instrument from the one-shot arming mode, turn the hold function off using the procedure described above.

\section*{3-15. USING AUTO TRIGGER LEVEL}

The auto trigger function is useful when measuring repetitive signals having an unknown dc component. The auto trigger is capable of finding the peaks of the signal and then setting the trigger level exactly at their center. In addition, The auto trigger automatically sets the correct attenuation to adjust the input signal to the operating dynamic range. The auto trigger mode will not operate on
totalize B and frequency C functions. Trigger level function works in conjunction with Channels A and B.

To set the Model 6010 to operate in auto trigger mode proceed as follow:

1 Press the 2nd push-button and then press the AUTO TRIG pushbutton. The AUTO TRIG light will illuminate; indicating that the auto trigger function is selected. When the indicator is off, the instrument is in normal manual trigger level mode.
2. Apply the signal to be measured to the appropriate input connector. After a short search sequence, the gate will open and the measurement will be processed.
3. TL A or TL B will blink if an error was detected. Refer to paragraph 3-6-3 for a additional error indications information.
4. To return the Model 6010 to normal trigger level mode, press the 2nd push-button and then press the AUTO TRIG button.

\section*{3-16. USING V PEAK A}

Using the V PEAK function turns the Model 6010 into a versatile RF peak voltage meter where both low and high peaks are detected, processed and displayed. This is especially useful in analyzing the amplitude of the signal and the magnitude of the dc component. Their are two available measurement rates for the \(V\) Peak function: Fast for normal measurements above 100 Hz and slow rate for measurements of signals below 100 Hz . To select the V Peak function proceed as follows:
1. Press the 2nd push-button and then the V PK A push-button (second function to FREQ push-button). Observe that the VOLTS light illuminates. This indicates that the instrument is now set to V Peak A measurements. The normal display reading will transform into a two section display like the following:
\[
0.00 \quad 0.00
\]

The three digits on the left indicate the low peak. The right three digits indicate the high peak. Negative values have a leading minus sign where positive values have no sign. The minus sign and the decimal points are automatically set by the instrument.
2. To select the measurement rate press the GT push-button in the DISPLAY/MODIFY group and observe that the reading on the display is as follows:

\section*{FASt}

This reading indicates that the instrument is set to the fast measuring rate. Now press the VERNIER UP push-button once and observe that the display reading is changed to the following:

\section*{SLO}

This reading indicates that the instrument is set to \(V\) Peak \(A\) with a slow measuring rate. Press the GT push-button again. The instrument is now ready to perform the required function.
3. Press the GT push-button to return the counter to normal V Peak display.
4. Press one of the FUNCTION push-buttons to select another function. The display will return to normal display reading and the VOLTS light will turn off.

\section*{3-17. USING USER GATE}

The user gate is useful when a gate time other than the predetermined gate times listed in Table 3-3 is required. The limits which must be observed are the minimum limit of \(100 \not \approx S\) and the maximum limit of 1000 S . The user gate function is accessible in FRQ \(A, B\) and \(C\), A/B, PER AVG and TI AVG A to B operating modes. To operate the instrument in the user gate mode proceed as follows:
1. Set the instrument to PRQ A. Press the GT push-button and observe that the GT light turns on and the instrument displays the gate time.
2. Press and hold the VERNIER UP push-button and observe that the display increments. After the 10 Sec gate time the instrument will enter the user gate mode and the instrument will display the following readout:

USEr GAtE
Pressing the UP push-button after the user gate is displayed will sound an audible alarm.
3. Press the GT push-button. The light will turn off and the instrument will be ready for measurements with an external gate time.
4. Apply a TTL pulse to the rear panel EXT INPUT connector. The high level duration of the TTL pulse determines the length of the gate time.
5. To exit the user gate function press the VERNIER DOWN pushbutton. Pressing both the UP and DOWN push-buttons will preset the gate time to 1 S .

\section*{3-18. USING DELAY}

The Model 6010 has a delay function which disables the closure of the opened gate for the predetermined periods listed in Table 3-3. This function is very useful in burst measurements, relay open/close time measurements where bounce time should be eliminated or in measurements done on a train of pulses. The delay function is accessible in PER A, and Time Interval A to \(B\). The delay time may be selected as follows:
1. Set the instrument to PER A. Press the DLY push-button in the DISPLAY/MODIFY group and observe that the DLY light turns on and the instrument displays the delay time.
2. To change the delay time, press the VERNIER UP or DOWN pushbuttons. When one of the UP or DOWN push-buttons are pressed for more than one second, the instrument will increment or decrement continuously.
3. Pressing the VERNIER UP and DOWN simultaneously will change the delay time to a preset value of 1 S .
4. To resume normal display, press the DLY push-button. The DLY light will turn off. When enabled, the instrument will perform measurements with the newly selected delay time. Table 3-3 lists the delay times which are available as preselected values.
5. To enable the delay mode, press the 2nd push-button and then the DELAY push-button (second function to GT/DLY push-button). Observe that the DELAY light illuminates. This indicates that the instrument is now set to operate in the delay mode. A selection of any other function, when DELAY light is on, will automatically turn off the delay light. Conversely, returning to one of these functions will again enable the delay mode.
6. To return to normal operation press 2nd push-button and then the GT/DLY push-button. The DELAY light will turn off; indicating that the instrument is no longer in delay mode.

\section*{NOTE}

To prevent operator's error, there is an internal audible alarm that beeps whenever a limit is reached. (e.g \(100 \mu \mathrm{~S}\) low limit). Refer to Table 3-3.

\section*{3-19. USING USER DELAY}

The user delay is useful when a delay time other than the predetermined delay times which are listed in Table 2-1 is required. The limits which must be observed are the minimum limit of \(100 \mu \mathrm{~S}\) and the maximum limit of \(10,000 \mathrm{Sec}\). The user delay function is accessible in PER A, and Time Interval A to B operating modes. To operate the instrument in the user delay mode proceed as follows:
1. Set the instrument to PER A. Press the DLY push-button and observe that the DLY light turns on and the instrument displays the delay time.
2. Press and hold the VERNIER UP push-button and observe that the display increments. After the 10 S delay time the instrument will enter the user gate mode and the instrument will display the following readout:

\section*{USEr dLAY}

Pressing the UP push-button after the user gate is displayed will sound an audible alarm.
3. To resume normal display, press the DLY push-button. The DLY light will turn off. When enabled, the instrument will perform measurements with the user delay time.
4. To enable the user delay mode, press the 2 nd push-button and then the DELAY push-button (second function to GT/DLY push-button). Observe that the DELAY light illuminates. This indicates that the instrument is now set to operate in the user delay mode. A selection of any other function, when DELAY light is on, will automatically turn off the delay light. Conversely, returning to one of these functions will again enable the user delay mode.
5. Apply a TTL high pulse to the rear panel EXT INPUT connector. Delay would then be enabled as long as this input is kept at TTL high level. The first negative transition to TTL low at this input, will disable the delay. The delay would then be disabled as long as this input is kept at TTL low level.

3-20. USING FRONT PANEL SET-UPS
Setting up all parameters in a versatile instrument such as the Model 6010 takes some time. The set-up time is longer when more than one set-up is required. The Model 6200 incorporates a battery backedup non-volatile memory that preserves stored information indefinitely. It is possible to store complete front panel set-ups in 10 different memory locations which are built into the instrument especially for this purpose.

3-20-1. STORE SET-UPS
First modify the front panel parameters as necessary to perform your tasks. When all parameters are set and checked, proceed to store this set-up as follows:
1. Depress the STO pushbutton and observe that the display is modified to indicate the following:

StorE ? (? appears flashing)
This reading indicates that the instrument is ready to receive one the memory location where front panel set-up is to be stored. Set-ups may be stored in locations 0 to 9 . Depressing STO again cancels this function and the instrument resumes normal operation.
2. Select one memory location from 0 to 9 and depress the button which is marked with the selected number. The instrument will display the following for one second:

StorE D (Where D is the selected memory location)
This display indicates that the function generator acknowledges the entered memory location. The instrument will then resume normal operation.

\section*{3-20-2. RECALL SET-UPS}

Turning AC Mains power off will not affect the stored data in the RAM which preserves the front panel set-up previously recorded by the user. To recall a front panel set-up proceed as follows:
1. Depress the RCL pushbutton and observe that the display is modified to indicate the following:

> rEcALL ? (? appears flashing)

This reading indicates that the instrument is ready to recall the memory location where front panel set-up was stored. Depressing the RCL button cancels this function and the instrument resumes normal operation.
2. Select one memory location from 0 to 9 so as to recall the desired set-up, and depress the button which is marked with the selected number. The instrument will display the following for one second:
rEcALL D (Where D is the selected memory location)

The instrument will then recall the parameters that were previously stored in the selected memory location and will update front panel indicators with the recalled parameters.

\section*{3-21. ANALOG OUTPUT}

The analog output option provides an high accuracy source to drive a chart recorder. This option is especially useful in measuring and recording long term stability of oscillators, V to \(F\) convertors temperature drifts, etc. Front panel programming allows a selection of any three adjacent digits which would then be monitored by the instrument and supplied to the analog output as a dc voltage. Full scale output is +9.99 V . A 000 display reading is equivalent to 0.00 V at the output connector where a reading of 999 is equivalent to 9.99 v.

\section*{3-21-1. SETTING THE ANALOG OUTPUT RESOLUTION}

First set up the instrument to the required function, gate time and input conditioning as described in paragraph 3-7. Make sure that the required resolution is displayed. As an example, let us assume that the display reading is as follows:
\[
1.23 \underline{456789 \mathrm{E}+3}
\]

Let us also assume that we want to monitor the 3 rd, 4 th and 5 th digits from the right, as underlined above. To program the Model 6010 to convert just these three digits to an equivalent dc voltage proceed as follows:
1. Press the 2nd push-button and then the A.OUT push-button (second function to SLOPE). The display reading will change to display a group of three bars as follows:
\(789 \mathrm{E}+3\)
The least significant digits 6,7 and 8 are shown as whole digits These digits will be converted for the analog output. All other digits are replaced by vertical bars.
2. Press the VERNIER UP or DOWN push-buttons to move the digits from left to right and vise versa until the display indicates the following:
\[
--ـ^{456}-ـ^{\mathrm{E}+3}
\]
3. Press the ENT push-button to program the instrument for the selected resolution.
4. Connect a cable, from the rear panel analog output connector, to the chart recorder. The analog output will be updated about 100 mS following a completion of a measurement cycle. Output will then follow the readings on the display.

\section*{3-21-2. SETTING THE ANALOG OUTPUT OFFSET}

Front panel programming allows to offset the analog output voltage so that the needle on the chart recorder would rest anywhere between the bottom to the top of the scale. To set the analog output offset proceed as follows:
1. Press 2nd push-button and then press OFST push-button (second function to LF). The VOLTS indicator will turn on and the display reading will be as follows:
xxx (xxx could range from 100 to 900)
This reading indicates the offset voltage that would be applied to the analog output reading. 100 indicates \(1 \mathrm{~V}, 900\) indicates 9 V .
2. Press the VERNIER UP or DOWN push-buttons to change the offset reading.
3. Press both VERNIER UP and DOWN push-buttons to reset the offset reading to 0 V .
4. Press the ENT push-button (second function to STO) to program the instrument to the new offset value. The counter will then return to normal display reading.

\section*{3-22. USING THE EXTERNAL REFERENCE}

The Model 6010 provides, as standard, two accuracy grades for the internal time base: stabilized clock and an optional temperature compensated crystal oscillator (TCXO). The best accuracy, over the specified temperature operating range, that may be achieved with the TCXO is 1 PPM - accuracy which will satisfy most of the requirements. With special applications, where such an inaccuracy may be a limiting factor, an external reference may be applied for a better solution. An EXT REF connector is provided on the rear panel however, before applying the reference signal, it is first necessary to open the top cover and change a switch setting. The procedure of changing this switch is given in Section 5 of this manual.

\section*{3-23. CHANGING THE GPIB ADDRESS}

GPIB address is modified using front panel programming. The nonvolatile memory stores the GPIB address. Conventional address switches are not provided. Detailed instructions how to change the GPIB address are given in Section 4.

\section*{SECTION 4}

\section*{IEEE-488 OPERATION}

\section*{4-1. INTRODUCTION}

The IEEE-488 bus is an instrumentation data bus with standards adopted by the IEEE (Institute of Electrical and Electronic Engineering) in 1975 and given the IEEE-488 designation. The most recent revision of bus standards was made in 1978; hence the complete descryption for current bus standards is the IEEE-488-1978 designation. The Model 6010 conforms to 1978 standards.

This section contains general bus information as well as detailed programming information and is divided as follows:
1. General introductory information pertaining to the IEEE-488 bus may be found primarily in paragraphs 4-2 through 4-5.
2. Information necessary to connect the Model 6010 to the bus and to change the bus address is contained in paragraphs 4-6 and 4-7.
3. Programming of the instrument with general bus command is covered in paragraph 4-8.
4. Device-dependent command programming is described in detail in paragraph 4-9. The commands outlined in this section can be considered to be the most important since they control virtually all instrument functions.
5. Additional information pertaining to front panel error messages and controller programs can be found in paragraphs 4-11-1 and 4-11-2

\section*{4-2. BUS DESCRIPTION}

The IEEE-488 bus was designed as a parallel data transfer medium to optimize data transfer without using as excessive number of bus lines. In keeping with this goal, the bus has only eight data lines which are used for both data and most commands. Five bus management lines and three handshake lines round out the complement of signal lines. Since the bus is of parallel design, all devices connected to the bus have the same information available simultaneously. Exactly what is done with the information by each device depends on many factors, including device capabilities.

A typical bus configuration for remote controlled operation is shown in Figure 4-1. The typical system will have one controller and one or more instruments to which commands are given and from which data is received. There are three categories that describe device operation. These include: controller; talker; listener.

The controller controls other devices on the bus. A talker sends data, while a listener receives data. an instrument, may be a talker only, a listener only, or both a talker and listener.

Any given system can have only one controller (control may be passed to an appropriate device through a special command). Any number of talkers or listeners may be present up to the hardware constraints of the bus. The bus is limited to 15 devices, but this number may be reduced if higher than normal data transfer rates are required or if long interconnect cables are used.

Several devices may be commanded to listen at once, but only one device may be a talker at any given time. Otherwise, communications would be scrambled much like an individual is trying to select a single conversation out of a large crowd.

Before a device can talk or listen, it must be appropriately addressed. Devices are selected on the basis of their primary address. The addressed device is sent a talk or listen command derived from its primary address. Normally, each device on the bus has a unique primary address so that each may be addressed individually. The bus also has another addressing mode called secondary addressing, but not all devices use this addressing mode.

Once the device is addressed to talk or listen, appropriate bus transactions may be initiated. For example, if an instrument is addressed to talk, it will usually place its data on the bus one byte at a time. The listening device will then read this information, and the appropriate software is then be used to channel the information to the desired location.


Figure 4-1. IEEE Bus Configuration

\section*{4-3. IEEE-488 BUS LINES}

The signal lines on the IEEE-488 bus are grouped into three general categories. The data lines handle bus information, while the handshake and bus management lines assure that proper data transfer and bus operation takes place. Each of the bus lines is "active low" so that approximately zero volts is a logic "one". The following paragraphs describe the purpose of these lines, which are shown in Figure 4-1.

\section*{4-3-1. BUS MANAGEMENT LINES}

The bus management group is made up of five signal lines that provide orderly transfer of data. These lines are used to send the uniline commands described in paragraph 4-8-1.
1. ATN (Attention) - the ATN line is one of the more important management lines. The state of the ATN line determines whether controller information on the data bus is to be considered data or a multiline command as described in paragraph 4-8-2.
2. IFC (Interface Clear) - Setting the IFC line true (low) causes the bus to go to a known state.
3. REN (Remote Enable) - Setting the REM line low sends the REM command. This sets up instruments on the bus for remote operation.
4. EOI (End Or Identify) - The EOI line is used to send the EOI command that usually terminates a multi-byte transfer sequence.
5. SRQ (Service Request) - the SRQ line is set low by a device when it requires service from the controller.

4-3-2. Handshake Lines
The bus uses three handshake lines that operate in an interlocked sequence. This method assures reliable data transfer regardless of the transfer rate. Generally, data transfer will occur at a rate determined by the slowest active device on the bus.

One of the handshake lines is controlled by the data source, while the remaining two lines are controlled by accepting devices. The three bus handshake lines are:
1. DAV (Data Valid) - The source controls the state of the DAV line.
2. NRFD (Not Ready For Data) - the acceptor controls the state of the NRFD line.
3. NDAC (Not Data Accepted) - the acceptor also controls the NDAC line.

The complete handshake sequence for one data byte is shown in Figure 4-2. Once data is on the bus, the source checks to see that NRFD is high, indicating that all devices on the bus are ready for data. At the same time NDAC should be low from the previous byte transfer. If these conditions are not met, the source must then wait until the NRFD and NDAC lines have the correct status. If the source is controller, NRFD and NDAC must remain stable for at least 100 ns
after ATN is set low. Because of the possibility of bus hang up, some controllers have time-out routines to display error messages if the handshake sequence stops for any reason.


Figure 4-2. IEEE Handshake Sequence
Once the NRFD and NDAC lines are properly set, the source sets the DAV line low, indicating that data on the bus is now valid. the NRFD line then goes low; the NDAC line goes high once all devices on the bus have accepted the data. Each device will release the NDAC line at its own rate, but the NDAC line will not go high until the slowest device has accepted the data byte.

After the NDAC line goes high, the source then sets the DAV line high to indicate that the data on the bus is no longer valid. At this point, the NDAC line returns to its low state. Finally, the NRFD line is released by each of the devices at their own rates, until the NRFD line finally goes high when the slowest device is ready, and the bus is set to repeat the sequence with the next data byte.

The sequence just described is used to transfer both data and multiline command. The state of the ATN line determines whether the data bus contains data or commands.

\section*{4-3-3. Data Lines}

The IEEE-488 bus uses the eight data lines that allow data to be transmitted and received in a bit-parallel, byte-serial manner. These eight lines use the convention DIO1 through DIO8 instead of the more common D0 through D7 binary terminology. The data lines are bi-directional and, as with the remaining bus signal lines, low is true.

\section*{4-4. INTERFACE FUNCTION CODES}

The interface function codes are part of the IEEE-488-1978 standards. These codes define an instrument's ability to support various interface functions and should not be confused with programming commands found elsewhere in this manual.

Table 4-1 lists the codes for the Model 6010. The numeric value following each one or two letter code define Model 6010 capability as follows:

SH (Source Handshake Function) - The ability for the Model 6010 to initiate the transfer of message/data on the data bus provided by the SH function.

AH (Acceptor Handshake Function) - The ability for the Model 6010 to guarantee proper reception of message/data on the data bus provided by the AH function.

T (Talker Function) - The ability of the Model 6010 to send devicedependent data over the bus (to another device) is provided by the \(T\) function. Model 6010 talker capabilities exist only after the instrument has been addressed to talk.

L (Listen Function) - The ability of the Model 6010 to receive device-dependent data over the bus (from anther device) is provided by the \(L\) function. Listener function capability of the Model 6010 exist only after it has been addressed to listen.

RS (Service Request Function) - The ability of the Model 6010 to request service from the controller is provided by the RS function.

RL (Remote-Local Function) - The ability of the Model 6010 to be placed in remote or local modes is provided by the RL function.

PP (parallel Poll Function) - The ability of the Model 6010 to respond to a parallel poll request from the controller is provided by the PP function.

DC (Device Clear Function) - The ability for the Model 6010 to be cleared (initialized) is provided by the DC function.

DT (Device Trigger Function) - The ability of the Model 6010 to have its output triggered is provided by the DT function.

C (controller Function) - The Model 6010 does not have a controller function.

TE (Extended Talker Capabilities) - The Model 6010 does not have extended talker capabilities.

LE (Extended Listener Function) - The Model 6010 does not have extended listener function.

Table 4-1. Model 6010 Interface Function Codes
```

CODE INTERFACE FUNCTION
SH1 Source Handshake Function
AH1 Acceptor Handshake Capabilities
T6 Talker (basic talker, serial poll, unaddressed to talk on LAG)
L4 Listener (basic listener, unaddressed to listen on TAG)
SR1 Service request capability
RL1 Remote/Local capability
PP2 Parallel Poll capability
DC1 Device Clear capability
DT1 Device Trigger capability
CO No controller capability
E1 Open collector bus drivers
TEO No Extended Talker capabilities
LE0 No Extended Listener capabilities

```

\section*{4-5. SOFTWARE CONSIDERATIONS}

The most sophisticated computer in the world would be useless without the necessary software. This basic requirement is also true of the IEEE-488 bus, which requires the use of handler routines as described in this paragraph.

Before a controller can be used with the IEEE-488 interface, the user must make certain that appropriate handler software is present within the controller. With the HP-85 computer, for example, the HP85 interface card must be used with an additional I/O ROM, which contains the necessary handler software.

Other small computers that can be used as controllers have limited IEEE command capability. The PET/CBM computers, for example, are incapable of sending multiline commands from BASIC, although these commands can be sent through machine language routines. The capabilities of other small computers depends on the particular interface being used. Often, little software "tricks" are required to achieve the desired results.

From the preceding discussion, the message is clear: make sure the proper software is being used with the instrument. Often, the user may incorrectly suspect that a hardware problem is causing fault, when it was the software that was causing the problem all along.

\section*{4-6. HARDWARE CONSIDERATIONS}

Before the instrument can be used with the IEEE-488 bus, it must be connected to the bus with a suitable connector. Also, the primary
address must be properly programmed as described in this section.

\section*{4-6-1. Typical Controlled Systems}

The IEEE-488 bus is a parallel interface system. As a result, adding more device is simply a matter of using more cables to make the desired connections. Because of this flexibility, system complexity can range from simple to extremely complex.

The simplest possible controlled system comprises a controller and one Model 6010. The controller is used to send commands to the instrument, which sends data back to the controller.

The system becomes more complex when additional instrumentation is added. Depending on programming, all data may be routed through the controller, or it may be transmitted directly from one instrument to another.

For very complex applications, a much larger computer can be used. Tape drives or disks may then be used to store data.

\section*{4-6-2. Connections}

The instrument is connected to the bus through an IEEE-488 connector. This connector is designed to be stacked to allow a number of parallel connections on one instrument.

\section*{NOTE}

To avoid possible mechanical damage, it is recommended that no more than three connectors be stacked on any one instrument. Otherwise, the resulting strain may cause internal damage to the connectors.

\section*{NOTE}

The IEEE-488 bus is limited to a maximum of 15 devices, including the controller. Also, the maximum cable length is 20 meters. Failure to observe these limits will probably result in erratic bus operation.

Custom cables may be constructed using the information in Table 42. Table 4-2 also lists the contact assignments for the various bus lines. Contacts 18 through 24 are return lines for the indicated signal lines, and the cable shield is connected to contact 12. Each ground line is connected to digital common in the Model 6010.
```

** CAUTION **

```

The voltage between IEEE common and ground must not exceed \(O V\) or damage may result to your instrument.

Table 4-2. IEEE Contact Designations
\begin{tabular}{lll}
\begin{tabular}{l} 
Contact \\
Number
\end{tabular} & \begin{tabular}{l} 
IEEE-488 \\
Designation
\end{tabular} & Type \\
\hline 1 & DIO1 & Data \\
2 & DIO2 & Data \\
3 & DIO3 & Data \\
4 & DIO4 & Data \\
5 & EOI & Management \\
6 & DAV & Handshake \\
7 & NRFD & Handshake \\
8 & NDAC & Handshake \\
9 & IFC & Management \\
10 & SRQ & Management \\
11 & ATN & Management \\
12 & SHIELD & Ground \\
13 & DIO5 & Data \\
14 & DIO6 & Data \\
15 & DIO7 & Data \\
16 & DIO8 & Data \\
17 & REN & Management \\
18 & Gnd & Ground \\
19 & Gnd & Ground \\
20 & Gnd & Ground \\
21 & Gnd & Ground \\
22 & Gnd & Ground \\
23 & Gnd LOGIC & Ground \\
24 & Ground \\
\hline
\end{tabular}

\section*{4-7. CHANGING GPIB ADDRESS}

The primary address of your instrument may be programmed to any value between 0 and 30 as long as the selected address is different from other devices addresses in the system. This may be accomplished using a front panel programming sequence. Note that the primary address of the instrument must agree with the address specified in the controller's program.

\section*{NOTE}

The programmed primary address is briefly displayed during the power-up cycle of the Model 6010. It is stored in the non-volatile memory of the instrument and is retained even when power is turned off.

To check the present address, or to enter a new one, proceed as follows:
1. Press the 2nd push-button once then press the ADR push-button (second function to SLOPE). The display will be modified to display the following:

IE Adr \(x\) Where \(x\) may be any number from 0 to 30 .
2. Press the VERNIER UP or DOWN push-buttons the select a new GPIB primary address.
3. To store the newly selected primary address depress ENT (second function to STO). The instrument will then resume normal operation.

\section*{4-8. BUS COMMANDS}

While the hardware aspect of the bus is essential, the interface would be essentially worthless without appropriate commands to control the communications between the various instruments on the bus. This paragraph briefly describes the purpose of the bus commands, which are grouped into the following three categories:
1. Uniline commands: Sent by setting the associated bus line low.
2. Multiline commands: General bus commands which are sent over the data lines with the ATN line low (true).
3. Device-dependent commands: Special commands that depend on device configuration; sent over the data lines with ATN high (false).

Table 4-3. IEEE-488 Bus Command Summary
\begin{tabular}{|c|c|c|c|}
\hline COMMAND TYPE & COMMAND & \begin{tabular}{l}
STATE OF \\
ATN LINE*
\end{tabular} & COMMENTS \\
\hline \multirow[t]{5}{*}{Uniline} & REN & X & Set up for remote operation \\
\hline & EOI & X & Sent by setting EOI low \\
\hline & IFC & X & Clears Interface \\
\hline & ATN & Low & Defines data bus contents \\
\hline & SRQ & X & Controlled by external device \\
\hline \multirow[t]{5}{*}{Multiline Universal} & & & \\
\hline & LLO & Low & Locks out front panel controls \\
\hline & DCL & Low & Returns device to default conditions \\
\hline & SPE & Low & Enable serial polling \\
\hline & SPD & Low & Disables serial polling \\
\hline \multirow[t]{3}{*}{Addressed} & SDC & Low & Returns unit to default condition \\
\hline & GTL & Low & Returns to local control \\
\hline & GET & Low & Triggers device for reading \\
\hline \multirow[t]{2}{*}{Unaddress} & UNL & Low & Removes all listeners from bus \\
\hline & UNT & Low & Removes all talkers from bus \\
\hline Devicedependent** & & High & Programs Model 6010 for various \\
\hline
\end{tabular}

\footnotetext{
* \(\mathrm{X}=\) Don't Care, ** See paragraph 4-9 for complete description
}

\section*{4-8-1 Uniline Commands}

Uniline commands are sent by setting the associated bus line to low. The ATN, IFC, and REN commands are asserted only by the system controller. The SRQ command is sent by an external device. The EOI command may be sent by either the controller or an external device depending on the direction of data transfer. The following is description of each command.

REN (Remote Enable) - The remote enable command is sent to the Model 6010 by the controller to set the instrument up for remote operation. Generally, this should be done before attempting to program the instrument over the bus. The Model 6010 will indicate that it is in the remote mode by illuminating its front panel REM indicator.

To place the Model 6010 in the remote mode, the controller must perform the following steps:
1. Set the REN line true.
2. Address the Model 6010 to listen.

\section*{NOTE}

Setting REN true without addressing will not cause the REM indicator to turn on; however, once REN is true, the REM light will turn on the next time an address command is received.

EOI (End Or Identify) - The EOI command is used to positively identify the last byte in a multi-byte transfer sequence. This allows variable length data words to be transmitted easily.

IFC (Interface Clear) - The IFC command is sent to clear the bus and set the Model 6010 to a known state. Table 4-4 summarizes the instrument's state after IFC or DCL. Although device configurations differ, the IFC command usually places instruments in the talk and listen idle states.

ATN (Attention) - The controller sends ATN while transmitting addresses or multiline commands. Device-dependent commands are sent with the ATN line high (false).

SRQ (Service Request) - The SRQ command is asserted by an external device when it requires service from the controller. If more than one device is present, a serial polling sequence, as described in paragraph 4-8-2, must be used to determine which has requested service.

\section*{4-8-2. Universal multiline Commands}

Universal commands are multiline commands that require no addressing. All instrumentation equipped to implement the command will do so simultaneously when the command is transmitted over the bus. As with all multiline commands, the universal commands are sent over the data lines with ATN set low:

LLO (Local Lockout) - The LLO command is sent by the controller to remove the Model 6010 from the local operating mode. Once the unit receives the LLO command, all its front panel controls (except Power) will be inoperative.

\section*{NOTE}

The REN bus line must be true before the instrument will respond to an LLO command.

To lock out the front panel controls of the Model 6010, the controller must perform the following steps:
1. Set ATN true.
2. Send the LLO command to the instrument.

DCL (Device Clear) - The DCL command may be used to clear the Model 6010, setting it to a known state. Note that all devices on the bus equipped to respond to a DCL will do so simultaneously. When the Model 6010 receives a DCL command, it will return to the default conditions listed in Table 4-4.

To send a DCL command the controller must perform the following steps:
1. Set ATN true.
2. Place the DCL command on the bus.

SPE (Serial Poll Enable) - The serial polling sequence is used to obtain the Model 6010 status byte. Usually, the serial polling sequence is used to determine which of several devices has requested service over the SRQ line. However, the serial polling sequence may be used at any time to obtain the status byte from the Model 6010. For more information on status byte format, refer to paragraph 4-9-20. The serial polling sequence is conducted as follows:
1. The controller sets the ATN line true.
2. The SPE (Serial Poll Enable) command is placed on the bus by the controller.
3. The Model 6010 is addressed to talk.
4. The controller sets ATN false.
5. The Model 6010 then places its status byte on the bus to be read by the controller.
6. The controller then sets the ATN line low and places SPD (Serial Poll Disable) on the bus to end the serial polling sequence.

Steps 3 trough 5 may be repeated for other instruments on the bus by using the correct talk address for each instrument. ATN must be true when the talk address is transmitted and false when the status byte is read.

SPD (Serial Poll Disable) - The SPD command is sent by the controller to remove all instrumentation on the bus from the serial poll mode.

Table 4-4. Default Conditions. (Status After SDC or DCL)
\begin{tabular}{|c|c|c|}
\hline MODE & VALUE & STATUS \\
\hline Function & F0 & Frequency A \\
\hline Coupling & AC0 & DC coupled on channel A. \\
\hline Attenuator & AA0 & x1 attenuator on channel A. \\
\hline Filter & AFO & Filter off on channel A. \\
\hline Slope & AS0 & Positive slope on channel A. \\
\hline Impedance & AIO & \(1 \mathrm{~m} \Omega\) on channel A . \\
\hline Coupling & BC0 & DC coupled on channel B. \\
\hline Attenuator & BA0 & x1 attenuator on channel B. \\
\hline Filter & BF0 & Filter off on channel B. \\
\hline Slope & BS0 & Positive slope on channel B. \\
\hline Impedance & BIO & \(1 \mathrm{M} \Omega\) on channel B . \\
\hline Auto Trigger & L0 & Manual trigger disabled. \\
\hline Delay & IO & Delay disabled. \\
\hline \(V\) Peak Rate & V0 & Fast measurement rate. \\
\hline Totalize Mode & M0 & Totalize infinitely. \\
\hline Displayed Digits & N9 & Set maximum displayed digits to 9. \\
\hline Offset & 00 & Set analog output offset to 0 V . \\
\hline Resolution & P0 & Set analog output resolution to LSD. \\
\hline Rate & S1 & Normal 3 readings per second. \\
\hline SRQ mask & Q0 & SRQ disabled. \\
\hline Terminator & Z0 & CR LF with EOI \\
\hline Display mode & D0 & Display the measurement. \\
\hline Data format & X0 & prefix on, no leading zeros. \\
\hline Trigger level & ALO & 0 V on channel A . \\
\hline Trigger level & BLO & 0 V on channel B . \\
\hline Gate time & G1 & 1 second gate time. \\
\hline Delay time & W1 & 1 second delay time. \\
\hline
\end{tabular}

\section*{4-8-3. Addressed Commands}

Addressed commands are multiline commands that must be proceeded by a listen command derived from the device's primary address before the instrument will respond. Only the addressed device will respond to each of these commands:

SDC (Selective Device Clear) - The SDC command performs essentially the same function as the DCL command except that only the addressed device will respond. This command is useful for clearing only a selected instrument instead of all devices simultaneously. The Model 6010 will return to the default conditions listed in Table 4-4 when responding to an SDC command.

To transmit the SDC command, the controller must perform the following steps:
1. Set ATN true.
2. Address the Model 6010 to listen.
3. Place the SDC command on the data bus.

GTL (Go To Local) - The GTL command is used to remove the instrument from the remote mode of operation. Also, front panel control operation will usually be restored if the LLO command was previously sent. To send the GTL command, the controller must perform the following sequence:
1. Set ATN true.
2. Address the Model 6010 to listen.
3. Place the GTL command on the bus.

\section*{NOTE}

The GTL command does not remove the local lockout state. With the local lockout condition previously set, the GTL command will enable front panel control operation until the next time a listener address command is received. This places the Model 6010 in the local lockout state again.

GET (Group Execute Trigger) - The GET command is used to trigger or arm devices to perform a specific measurement that depends on device configuration. Although GET is considered to be an addressed command, many devices respond to GET without being addressed. Using the GET command is only one of several methods that can be used to initiate a measurement cycle. More detailed information on triggering can be found in Section 3 of this manual.

To send GET command over the bus, the controller must perform the following sequence:
1. Set ATN true.
2. Address the Model 6010 to listen.
3. Place the GET command on the data bus.

GET can also be sent without addressing by omitting step 2.

4-8-4. Unaddress Command
The two unaddress commands are used by the controller to simultaneously remove all talkers and listeners from the bus. ATN is low when these multiline commands are asserted.

UNL (Unlisten) - All listeners are removed from the bus at once when the UNL commands is placed on the bus.

UNT (Untalk) - The controller sends the UNT command to clear the bus of any talkers.

\section*{4-8-5. Device-Dependent Commands}

The meaning of the device-dependent commands is determined by instrument configuration. Generally, these commands are sent as one or more ASCII characters that tell the device to perform a specific function. For example, FO is sent to the Model 6010 to place the instrument in the FREQ A mode. The IEEE-488 bus treats devicedependent commands as data in that ATN is high (false) when the commands are transmitted.

\section*{4-9. DEVICE-DEPENDENT COMMAND PROGRAMMING}

IEEE-488 device-dependent commands are sent to the Model 6010 to control various operating conditions such as display modify, operating mode, output and parameter insertion. Each command is made up of an ASCII alpha character followed by one or more numbers designating specific parameters. For example the Measurement function is programmed by sending an ASCII "F" followed by a number representing the function. The IEEE bus treats device-dependent commands as data in that ATN is high when the commands are transmitted.

A number of commands may be grouped together in one string. The Model 6010 will ignore all non-printable ASCII characters (00 HEX through 20 HEX) except the "CR" (carriage return). A command string is terminated by an ASCII "CR" (carriage return) character (OD HEX) which tells the instrument to execute the command string. recognized as end of command string.

If an illegal command or command parameter is present within a command string, the instrument will:
1. Ignore the entire string.
2. Display appropriate front panel error message.
3. Set certain bits in its status byte.
4. Generate an SRQ if programmed to do so.

These programming aspects are covered in the following.

\section*{NOTE}

Before performing a programming example, it is recommended that the instrument be set to its default values by sending an SDC over the bus.

In order to send a device-dependent command, the controller must perform the following sequence:
1. Set ATN true.
2. Address the Model 6010 to listen.
3. Set ATN false.
4. Send the command string over the data bus one byte at a time.

\section*{NOTE}

REN must be true when attempting to program the Model 6010.

Commands that effect the Model 6010 are listed in Table 4-5.

Table 4-5. Device-Dependent Command Summary
\begin{tabular}{|c|c|c|}
\hline Mode & Command & Description \\
\hline \multirow[t]{13}{*}{Function} & F0 & Frequency on Channel A \\
\hline & F1 & Frequency on Channel B \\
\hline & F2 & Frequency on Channel C \\
\hline & F3 & Period on Channel A \\
\hline & F4 & Rise Time On Channel A \\
\hline & F5 & Time interval from \(A\) to \(B\) \\
\hline & F6 & Totalize on B \\
\hline & F7 & Ratio A/B \\
\hline & F8 & í A to B \\
\hline & F9 & \(V\) peak A \\
\hline & F10 & Period average on Channel A \\
\hline & F11 & Pulse average on Channel A \\
\hline & F12 & Time interval from \(A\) to \(B\) averaged \\
\hline \multirow[t]{4}{*}{Coupling} & AC0 & DC coupled on Channel A \\
\hline & AC1 & AC coupled on Channel A \\
\hline & BCO & DC coupled on Channel B \\
\hline & BC1 & AC coupled on Channel B \\
\hline \multirow[t]{4}{*}{Attenuator} & AAO & X1 attenuator on Channel A \\
\hline & AA1 & X10 attenuator on Channel A \\
\hline & BA0 & X1 attenuator on Channel B \\
\hline & BA1 & X10 attenuator on Channel B \\
\hline \multirow[t]{4}{*}{Filter} & AFO & Filter Off on Channel A \\
\hline & AF1 & Filter On on Channel A \\
\hline & BF0 & Filter Off on Channel B \\
\hline & BF1 & Filter On on Channel B \\
\hline \multirow[t]{4}{*}{Slope} & AS0 & Positive Slope on Channel A \\
\hline & AS1 & Negative Slope on Channel A \\
\hline & BS0 & Positive Slope on Channel B \\
\hline & BS1 & Negative Slope on Channel B \\
\hline \multirow[t]{2}{*}{Common/Separate} & \[
\begin{array}{ll}
\mathrm{e} \quad \mathrm{CO}
\end{array}
\] & \\
\hline & C1 & Common on Channel A \\
\hline Trigger level & \begin{tabular}{l}
ALn \\
BLn
\end{tabular} & ```
Set Trigger level for Channel A
Set Trigger level for Channel B
n = <sign>d.ddE<sign>d
d = digit
``` \\
\hline
\end{tabular}

Table 4-5. Device-Dependent Command Summary (continued)
\begin{tabular}{|c|c|c|}
\hline Auto level & \[
\begin{aligned}
& \text { L0 } \\
& \text { L1 }
\end{aligned}
\] & \begin{tabular}{l}
Auto trigger level disabled \\
Auto trigger level enabled (mode overrides manual mode)
\end{tabular} \\
\hline Gate Time & \begin{tabular}{l}
Gn \\
GU
\end{tabular} & ```
Set the Gate time in sec
n = dE<sign>d
d = digit
Set gate time to user gate
``` \\
\hline Delay Time & \begin{tabular}{l}
Wn \\
WU
\end{tabular} & ```
Set the Delay time in sec
n = dE<sign>d
d = digit
Set delay time to user delay
``` \\
\hline Delay & IO & \begin{tabular}{l}
Delay disabled \\
Delay enabled
\end{tabular} \\
\hline Vpk measurement rate & \[
\begin{aligned}
& \text { v0 } \\
& \text { v1 }
\end{aligned}
\] & \begin{tabular}{l}
Fast rate \\
Slow rate
\end{tabular} \\
\hline Totalize modes & \[
\begin{aligned}
& \text { M0 } \\
& \text { M1 } \\
& \text { M2 }
\end{aligned}
\] & Totalize infinitely on \(B\) Totalize on B by A Totalize on B by AA \\
\hline Displayed Digits & Nn & Set the maximum of the displayed digits (\(n=3\) to 9) \\
\hline ANALOG OUTPUT Offset Resolution & On
Pn & Set the analog output offset \(\mathrm{n}=0\) to 10. (0 correspo-nds to OVdc offset. 5 centers niddle) Set the selected resolution for the analog output \(\mathrm{n}=0\) to 6 (0 will output the three least significant digits. 6 will output the three most significant digits) \\
\hline Set-ups Store Recall & \[
\begin{aligned}
& S T n \\
& \text { REn }
\end{aligned}
\] & Store front panel set-up in \(n\) memory location Recall front panel set-up from \(n\) memory location \\
\hline Trigger & T & One-shot in SO mode \\
\hline Rate & \[
\begin{aligned}
& \text { S0 } \\
& \text { S1 } \\
& \text { S2 }
\end{aligned}
\] & \begin{tabular}{l}
One-shot on \(T\) or GET \\
Normal. 3 readings per sec \\
Fast. 25 readings per sec
\end{tabular} \\
\hline SRQ Mask & \[
\begin{aligned}
& \text { Q0 } \\
& \text { Q1 } \\
& \text { Q2 } \\
& \text { Q4 }
\end{aligned}
\] & \begin{tabular}{l}
SRQ disabled \\
SRQ on ready \\
SRQ on reading done \\
SRQ on error
\end{tabular} \\
\hline
\end{tabular}

Table 4-5. Device-Dependent Command Summary (continued)

\section*{4-9-1. Function (F)}

The function command select the type of measurement made by the Model 6010. The 10 parameters associated with the function command set the instrument to measure one of these functions. The function may be programmed by sending one of the following commands:
```

1. FO = FRQ A
2. F1 = FRQ B
3. F2 = FRQ C
4. F3 = PER A
5. F4 = RISE A
6. F5 = TI A->B
7. F6 = ТОт В
8. F7 = RATIO A/B
9. F8 = 0 A->B
10. F9 = V peak A
11. F10 = PER AVG A
12. F11 = PLS AVG A
13. F12 = TI A->B AVG
```

4-9-2. Channels A, B Coupling (AC, BC)
The coupling command gives the user control over the input coupling of the channel A and B inputs for the Model 6010. The coupling may be programmed by sending one of the following commands:
1. \(\mathrm{ACO}=\mathrm{DC}\) coupling channel A.
2. AC1 = AC coupling channel A.
3. \(\mathrm{BCO}=\mathrm{DC}\) coupling channel B .
4. \(\mathrm{BC} 1=\mathrm{AC}\) coupling channel B .

\section*{4-9-3. Channels A, B Attenuator (AA, BA)}

The attenuator command gives the user control over the input attenuator mode of the channel A and B inputs for the Model 6010. The attenuator may be programmed by sending one of the following commands:
1. \(\mathrm{AAO}=\mathrm{x} 1\) attenuator channel A .
2. AA1 \(=\times 10\) attenuator channel \(A\).
3. \(\mathrm{BAO}=\mathrm{x} 1\) attenuator channel B .
4. \(\mathrm{BA} 1=\mathrm{x} 10\) attenuator channel B .

4-9-4. Channels A, B Filter (AF, BF)
The filter command gives the user control over the input filter of the channel A and B inputs for the Model 6010. The filter may be programmed by sending one of the following commands:
1. \(\mathrm{AFO}=\) filter on channel A .
2. AF1 \(=\) filter off channel A.
3. \(\mathrm{BFO}=\) filter on channel B .
4. BF1 = filter off channel B.

\section*{4-9-5. Channels A, B Slope (AS, BS)}

The slope selection command gives the user control over the input slope mode of the channel A and B inputs for the Model 6010. The slope may be programmed by sending one of the following commands:
1. ASO = Positive slope channel A.
2. AS1 = Negative slope channel A.
3. \(\mathrm{BSO}=\) Positive slope channel B.
4. BS1 = Negative slope channel B.

\section*{4-9-6. Channel A Separate/Common (C)}

The Separate/Common selection command gives the user control over the input mode of the channel A and B inputs for the Model 6010. The common may be programmed by sending one of the following commands:
1. \(C O=\) Separate inputs for channels \(A\) and \(B\).
2. \(\mathrm{C} 1=\) Common input on channel A.

\section*{4-9-7. Channels A, B Trigger Level (AL, BL)}

The trigger level selection command gives the user control over the input threshold point on the signal applied to the channels A and B inputs of the Model 6010. The trigger level may be programmed by sending one of the following commands:
1. ALn = Trigger level channel A.
2. \(\mathrm{BLn}=\) Trigger level channel B .
\(\underline{n}\) is the trigger level in volts in engineering format. e.g.
(<sign>D.DD<sign>D). The sign and the exponent are optional. The trigger level may range from -5.00 to +5.00 V in 10 mV steps or from -50.0 to +50.0 V in 100 mV steps. Selecting a trigger level in the range of \(\pm 5.00 \mathrm{~V}\) will automatically set up the x 1 attenuator. Selecting a trigger level in the range of \(\pm 50.0 \mathrm{~V}\) will change the attenuator setting to \(x 10\) attenuator mode.

After DCL or SDC, the instrument will be in ALO and BLO (trigger levels set at 0.00 V)

\section*{4-9-8. Channels A, B Auto trigger level (L)}

The auto trigger level command gives the user control over the auto trigger level mode for channels \(A\) and \(B\). The auto trigger level mode may be programmed by sending one of the following commands:
1. \(\mathrm{LO}=\) Auto trigger level disabled.
2. L 1 = Auto trigger level enabled.

4-9-9. Gate Time (G, GU)
The gate time command controls the time that the gate remains open. The gate time may be programmed by sending a command using the following formats:

> 1. \(\mathrm{Gn}=\) Internal gate time
> 2. \(\mathrm{GU}=\) External user gate time
\(\underline{n}\) is the gate time in seconds in engineering format. e.g.
(DE<sign>D). The sign and the exponent are optional. The allowable values for gate time are listed in Table 3-3.

The gate time may also be programmed to the external user gate time by sending the GU command over the bus.

After DCL or SDC, the instrument will restart with a gate time of one second (G1)

\section*{4-9-10. Delay Time (W, WU)}
úúúThe delay time command controls the amount of delay in closing the gate after the gate was open. The delay time may be programmed by sending a command using the following formats:
1. \(\mathrm{Wn}=\) Internal delay time.
2. WU = External user delay time.
\(\underline{n}\) is the delay time in seconds in engineering format. e.g.
(DE<sign>D). The sign and the exponent are optional. The allowable values for delay time are listed in Table 3-3.

The delay time may also be programmed to the external user delay time by sending the GU command over the bus.

After DCL or SDC, the instrument will restart with a delay time of one second (W1)

\section*{4-9-11. V Peak Measurement Rate (V)}

The \(v\) peak measurement rate command controls the rate of which the instrument will perform the \(v\) peak measurements at the input connector of the Model 6010. The fast rate is normally used where the frequency to be measured is above 100 Hz . The slow rate is used when performing measurements below 100 Hz . The v peak measurement rate may be programmed by sending a command using the following formats:
1. \(\mathrm{VO}=\) Fast measurement rate.
2. V1 = Slow measurement rate.

4-9-12. Totalize Modes (M)
There are three totalize modes available with the Model 6010: Totalize infinitely, totalize by A and totalize by AA. The totalize mode command gives the user control over the selection of one of these totalize modes. The totalize mode may be programmed by sending a command using the following format:
1. MO = Totalize infinitely on B.
2. M1 = Totalize on \(B\) by \(A\).
3. \(\mathrm{M} 2=\) Totalize on \(B\) by AA.

\section*{4-9-13. Displayed Digits (N)}

The displayed digits function sets the maximum number of digits that the Model 6010 will display. To program the number of digits send the following command:

Nn
Where n may have any value from 3 to 9. Upon DCL or SDC, the instrument will be set to N9.

\section*{4-9-14. Analog Output Resolution (P)}

The analog output resolution selection command gives the user control over the resolution range of the analog output string. To program the analog output resolution send the following command:
```

PO = 3 least significant digits.
Pn = any three adjacent digits, n indicates the location of the
right most digit.
P6 = 3 most significant digits.

```
```

n may range from 0 to 6. Upon DCL or SDC, the instrument will be
set to P0.

```
4-9-15. Analog Output Offset (O)
The analog output offset command gives the user control over the
offset which will be applied to the output readout at the analog
output rear panel connector. To program the analog output offset send
the following command:

On
Where n may range from 0 to 9 V . Upon DCL or SDC , the instrument will be set to OV.

4-9-16. Set-ups (ST, RE)
The setups commands select the memory location where the actual set-up is to be stored (ST) or from where recalled (RE). To store or recall a set-up use one of the following commands:

\section*{STn}

REn
Where n may range from 0 to 9 . n is the memory address the set-up is to be stored or from where the set-up is to be recalled. DCL or SDC has no effect on the stored set-ups.

\section*{4-9-17. Triggering (T)}

The "T" and GET commands are used to trigger the Model 6010 over the IEEE bus. Triggering arms a measurement cycle. In the continuous mode, the Model 6010 is always armed. In the hold mode (SO), a separate trigger stimulus is required to arm each measurement cycle. To arm the Model 6010 for a new measurement cycle use the following commands:
1. \(T \quad=\) addressable trigger.
2. GET = group execute trigger.

\section*{4-9-18. Rate (S)}

The rate command gives the user control over the measurement rate of the Model 6010. To change the measurement rate use the following commands:
1. \(\mathrm{SO}=\) Hold, One shot on T or GET or external arming input.
2. S 1 = Normal, Approximately 3 reading per second.
3. \(\mathrm{S} 2=\) Fast, Approximately 25 reading per second. This rate can not be selected through front panel programming.

\section*{4-9-19. Display Modes (D)}

The display command controls what the Model 6010 places on the display. The eight parameters associated with the display command set the instrument to display the measurement, gate time, delay time, trigger level A, trigger level B, number of selected digits, analog output resolution and analog output offset. The display may be programmed using the following commands:
1. DO = Display the normal measurement.
2. D1 = Display the gate time.
3. D2 = Display the delay time.
4. D3 = Display the A trigger level.
5. D4 = Display the \(B\) trigger level.
6. D5 = Display the number of digits.
7. D6 = Display the analog output resolution.
8. D7 = Display the analog output offset.

\section*{4-9-20. SRQ Mode (Q) and Serial Poll Status Byte Format}

The SRQ command controls which of a number of conditions within the Model 6010 will cause the instrument to request service from the controller with the SRQ line command. Once the SRQ is generated, the Model 6010 status byte can be checked, via serial polling, to determine if it was the Model 6010 that requested service. Other bits in the status byte could also be set depending on certain data or error conditions. The Model 6010 can be programmed to generate SRQ under one of the following conditions.
1. If the Model 6010 is ready to receive device-dependent commands.
2. If a reading has been completed.
3. If an error condition has occurred.

SRQ Mask: In order to facilitate SRQ programming, the Model 6010 uses an internal mask to generate the SRQ. When a particular mask bit is set, the Model 6010 will send a SRQ when those conditions occur. Bits within the mask can be controlled by sending the ASCII letter "Q" followed by a decimal number to set the appropriate bits. Table 4-6 lists the commands to set the various mask bits, while Table 4-7 lists all legal SRQ Mask commands.

Table 4-6. SRQ Mask Commands
\begin{tabular}{lll}
Command & Sets Bit Number & Condition to Generate SRQ \\
\hline Q1 & B0 (LSB) & Ready \\
Q2 & B1 & Reading done \\
Q4 & B2 & Error \\
\hline
\end{tabular}

Table 4-7. SRQ Mask Legal Commands
\begin{tabular}{llll}
Bit Number & B3 & B2 & B0 (LSB) \\
\hline & & Reading & \\
Command & Error & Done & Ready \\
\hline Q0 & NO & NO & NO \\
Q1 & NO & NO & YES \\
Q2 & NO & YES & NO \\
Q3 & NO & YES & YES \\
Q4 & YES & NO & NO \\
Q5 & YES & NO & YES \\
Q6 & YES & YES & NO \\
Q7 & YES & YES & YES \\
& & & \\
& & & \\
& & &
\end{tabular}

There are 8 legal SRQ mask commands that are possible with the Model 6010. Table 4-7 lists all combinations. e.g selecting Q6, Model 6010 will request service when one of reading done or error occurs.

Status Byte Format: The status byte contains information relating to data and error conditions within the instrument. Table 4-4 lists the meaning of the various bits. The status byte is obtained by using the SPE,SPD polling sequence.

Table 4-8. Status Byte Interpretation
\begin{tabular}{lllllllll}
\begin{tabular}{lllll}
Bit Number & B7 & B6 & B5 & B4
\end{tabular} B3 & B2 & B1 & B0 (LSB) \\
\begin{tabular}{l}
\begin{tabular}{c}
Interpre- \\
tation
\end{tabular}
\end{tabular} 0 & rqs & 0 & 0 & 0 & Error & \begin{tabular}{l}
Reading \\
Done
\end{tabular} & Ready \\
\hline
\end{tabular}

The various bits in the status byte are described below:
1. Ready: Set after power-up. This bit is cleared when the Model 6010 receives a command and set again when the instrument have completed to decode the command (Model 6010 is ready for the next command string).
2. Reading done: Set after completion of a measurement cycle. The reading done bit is cleared after Model 6010 was addressed to talk in RO mode.
3. Error: Set if an illegal command has been received or one of gate error, gate time error or trigger level error has occurred in the last measurement cycle. This bit is cleared by reading the error status string (R7).
4. Rqs: Model 6010 will set this bit if one or more conditions for service request occur, and the SRQ mask, for at least one of these service request conditions is enabled. This bit is cleared by reading the Status Byte using the SPE,SPD polling sequence.

\section*{NOTES}
1. Once the Model 6010 has generated an SRQ, its status byte should be read to clear the SRQ line. Otherwise the instrument will continuously assert the SRQ line.
2. The Model 6010 may be programmed to generate an SRQ for more than one condition simultaneously. For example, to set SRQ mask bits for an SRQ if an error occurs and when the instrument is ready for the next string, the following command would be sent: Q5. All possible mask combinations are listed in Table 4-7.
3. If the instrument is programmed to generate an SRQ when reading is done, it will generate the SRQ only once when the reading is complete; the SRQ may be cleared by reading the status byte. The reading done bit in the status byte may then be cleared by requesting a normal reading from the instrument (RO).

\section*{4-10. READING FROM MODEL 6010}

The Reading sequence is used to obtain from Model 6010, various information strings such as measurement, gate time, delay time or trigger level. Each information string is made up of ASCII alpha and alphanumeric characters. For more details on the information strings format refer to paragraph 4-10-1.

The reading sequence is conducted as follows:
1. The controller sets the ATN line true.
2. The Model 6010 is addressed to talk.
3. The controller sets ATN false.
4. The instrument sends the information string over the bus one byte at a time.
5. The controller recognizes that the string is terminated.
6. The controller sets the ATN line true.
7. The UNT (untalk) command is placed on the bus by the controller.

\section*{NOTE}

Most controllers use the CR (Carriage Return) or LF (Line Feed) character to terminate their input sequences, but other techniques may be used as well to recognize the end of input sequence (for example the EOI line is low on the bus during the transfer of the last byte).

4-10-1 Data Control commands (R)
The Data Control commands allows access to information concerning present operating conditions of the instrument. When the data control command is given, the Model 6010 will transmit the associated data string instead of its normal data string. The next time it is addressed to talk the Model 6010 will transmit its normal measurement data string (RO).

The Model 6010 Data Control commands include:
```

RO = Send normal measuring data string
R1 = Send Gate Time data status string
R2 = Send Delay Time data status string
R3 = Send Trigger Level A data status string
R4 = Send Trigger Level B data status string
R5 = Send Input conditioning status string
R6 = Send Operating Mode Status string
R7 = Send Error Status string

```

Table 4-9 shows the general data string format for each of the seven commands (decimal point floats).

Table 4-10 shows the interpretation for the input conditioning status, operating mode status and error status strings (R5, R6 and R7)

NOTES
1. Data strings have fixed length of 14 ASCII characters for the R0, R5 and R6 commands without the prefix and terminator. For all other data strings (R1 through R4 and R7), the length of the data string is 5 ASCII characters without the prefix and terminator. If the data string is sent with a prefix, four additional ASCII characters are included (refer to paragraph 4-2-3). If the data string is sent with one or two terminators, the length of the data string increases by one or two characters respectively.
2. All normal measurement data string information (RO), besides the status strings (R1 through R7), will be sent only once each time a measurement has been successfully completed. This may halt the controller for the duration of the gate or delay time. It is therefore recommended that the status byte will be continuously monitored and normal reading taken only after the READING DONE bit is set true.
3. All status string information, besides the normal data strings, will be sent only once each time the command is sent. Once the data string is read, the instrument will send its normal data string (RO) the next time it is addressed to talk.

Table 4-9. Data String Formats
\begin{tabular}{|c|c|c|}
\hline Command & Data String Format & Description \\
\hline \multirow[t]{13}{*}{R0} & <FRQA>+1.23456789E+0 (TERM) & for FRQ A measurements \\
\hline & <FRQB>+1.23456789E+0 (TERM) & for FRQ B measurements \\
\hline & <FRQC>+1.23456789E+0 (TERM) & for FRQ C measurements \\
\hline & <PERS>+1.23456789E+0 (TERM) & for PER A measurements \\
\hline & <RISE>+1.23456789E+0 (TERM) & for RISE A measurements \\
\hline & <FALL>+1.23456789E+0 (TERM) & for FALL A measurements \\
\hline & <TABS>+1.23456789E+0 (TERM) & for T.I A->B measurements \\
\hline & <TOTB>+1.23456789E+0 (TERM) & for TOT B measurements \\
\hline & <APRB>+1.23456789E+0 (TERM) & for RATIO A/B measurements \\
\hline & <PHAS>+1.23456789E+0 (TERM) & for \(\theta\) A->B measurements \\
\hline & <VPKA>-0.00 -0.00 (TERM) & for V Peak A measurements \\
\hline & <PERV>+1.23456789E+0 (TERM) & for PER AVG A measurements \\
\hline & <TABV>+1.23456789E+0 (TERM) & for T.I A->B AVG measurements \\
\hline R1 & <GATE>+1E+0 (TERM) & for Gate Time \\
\hline R2 & <DLAY>+1E+0 (TERM) & for Delay Time \\
\hline R3 & <TRGA>+0.00 (TERM) & for Trig Level A \\
\hline R4 & <TRGB>+0.00 (TERM) & for Trig Level B \\
\hline R5 & <STAT>00000000000000 (TERM) & Input conditioning status \\
\hline R6 & <6010>00000900100000 (TERM) & Machine status \\
\hline R7 & <EROR>00000 (TERM) & Error status \\
\hline
\end{tabular}

CR LF is normal terminator. The terminator may be changed (see
paragraph 4-10-2). The prefixes are listed in Table 4-9.

Table 4-10. Status Word Interpretation
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|l|}{Command Status Word Format} \\
\hline R5 & <STAT> & F A & AC AA & AF AS & C & BC & B & BA & BF & F BS & 0 & L & I & (& term) & \\
\hline After SDC & <STAT> & 000 & 0 & 00 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & (& CR & LF) \\
\hline R6 & <6010> & OPT1 & 1 OPT2 & 2 OPT3 & V & M & N & 0 & P & S 2 & z & D & x & 0 & & term) \\
\hline After SDC & <6010> & n & n & n & 0 & 0 & 9 & 0 & 0 & 10 & 0 & 0 & 0 & 0 & & CR LF) \\
\hline R7 & <EROR> & ILI & ILP G & GATEERR & & TLE & ERR & R 0 & 0 & (CR & & & & & & \\
\hline After SDC & <EROR> & 0 & 0 & 0 & & & 0 & 0 & 0 & (RC & LF) & & & & & \\
\hline
\end{tabular}

\section*{NOTES}
1. The Error Status string will be returned only once each time the command is sent. Once status is read, the instrument will send its normal string the next time the instrument is addressed to talk and reading done bit is set true.
2. To ensure that the correct status is received, the status string should be read immediately after sending the command, to avoid having an incorrect status transmitted.
3. The status string should not be confused with the status byte. The status string contains a string of bytes pertaining to the various operating modes of the instrument. The status byte is a single byte that is read with the SPE, SPD command sequence and contains information on RSQ status.
4. The error status string is cleared by reading R7. Reading this status also clears the reading done and the error bits in the status byte.

\section*{4-10-2. Terminator (Z)}

To allow a wide variety of controllers to be used, the terminator can be changed by sending an appropriate command over the bus. The default value is the commonly used carriage return, line feed (CR LF) sequence (mode ZO). The terminator sequence will assume this default value after receiving a DCL or SDC.

The EOI line on the bus is usually set low by the device during the last byte of its data transfer sequence. In this way, the last byte is properly identified, allowing variable length data words to be transmitted. The Model 6010 will normally send EOI during the last byte of its data string or status word. The terminator and the EOI response from the Model 6010 may be sent with one of the following commands:
\begin{tabular}{rlr}
1. \(\mathrm{ZO}=\mathrm{CR}, \mathrm{LF}\) & with EOI \\
2. \(\mathrm{Z1}=\mathrm{CR}, \mathrm{LF}\) & without EOI \\
3. \(\mathrm{Z} 2=\mathrm{LF}, \mathrm{CR}\) & with EOI \\
4. \(\mathrm{Z} 3=\mathrm{LF}, \mathrm{CR}\) & without EOI \\
5. \(\mathrm{Z} 4=\mathrm{CR}\) & with EOI \\
6. \(\mathrm{Z5}=\mathrm{CR}\) & without EOI \\
7. \(\mathrm{Z} 6=\mathrm{LF}\) & with EOI \\
8. \(\mathrm{Z7}=\mathrm{LF}\) & without EOI \\
9. \(\mathrm{ZB}=\mathrm{No}\) terminator & with EOI \\
10. \(\mathrm{Z} 9=\) No terminator & without EOI
\end{tabular}

\section*{NOTES}
1. Most controllers use the CR or LF character to terminate their input sequence. Using the NO TERMINATOR mode (\(Z 8\) or \(Z 9\)) may cause the controller to hang up unless special programming is used.
2. Some controllers may require that EOI be present at the end of transmitting.

\section*{4-10-3. Prefix (X)}

The prefix from the data string may be suppressed using this command. When the prefix is suppressed the output data string is four byte shorter. The X command is also used to replace leading space character (ASCII 20 HEX) in the data string with character 0 (ASCII 30 HEX). For some controllers, an attempt to read a number instead of a string, will result a reading error because of its inability to read spaces before the first significant digit. To eliminate this problem the Model 6010 should be programmed to send the data string with leading zeros. \(X\) command parameters include:
```

X0 = Send data string with prefix, without leading zero
X1 = Send data string without prefix, without leading zero
X2 = Send data string with prefix, with leading zero
X3 = Send data string without prefix, with leading zero

```

\section*{4-11. FRONT PANEL ERROR MESSAGES}

The process of programming the Model 6010 involves the proper use of syntax. Syntax is defined as the orderly or systematic arrangement of programming commands or languages. The Model 6010 must receive valid commands with proper syntax or it will:
1. Ignore the entire commands string in which the invalid command appears.
2. Set appropriate bits in the status byte and error word.
3. Generate an SRQ if programmed to do so.
4. Display an appropriate front panel message.

4-11-1. ILL INS (Illegal Instruction) Error
An ILL INS error results when the Model 6010 receives an invalid command such as A0. This command is invalid because no such letter exist in the instruments programming language.

4-11-2. ILL PAR (Illegal Parameter) Error
An ILL PAR error occurs when the numeric parameter associated with a legal command letter is invalid. For example, the command D10 has an invalid option because the Model 6010 has no display mode associated with that number.

\section*{SECTION 5}

\section*{MAINTENANCE AND PERFORMANCE TESTS}

\section*{5-1. INTRODUCTION}

This section provides maintenance, service information, and performance tests for the Model 6010, the TCXO and clock multiplier (option 1), the 1.3 GHz input channel (option 2), the analog output option (option 3) and the GPIB option (option 4). Fuse replacement procedure, line voltage selection and options installation procedure are also included.
```

***************
** WARNING **
*************

```

The procedures described in this section are for use only by qualified service personnel. Do not perform these procedures unless qualified to do so. Many of the steps covered in this section may expose the individual to potentially lethal voltages that could result in personal injury or death if normal safety precautions are not observed.

\section*{5-2. LINE VOLTAGE SELECTION}

The Model 6010 may be operated from either 115V or 230 V nominal 5060 Hz power sources. A special transformer may be installed for 100V and 200V ranges. The instrument was shipped from the factory set for an operating voltage of 230 V . To change the line voltage, proceed as follows:
```

***************
** WARNING **
**************

```

Disconnect the Model 6010 from the power cord and all other sources before changing the line voltage setting.
1. Using a flat-blade screwdriver, place the line voltage selection switch in the desired position. The voltages are marked on the selection switch.
2. Install a power line fuse consistent with the operating voltage. See paragraph 5-3.

\section*{CAUTION}

The correct fuse type must be used to maintain proper instrument protection.

\section*{5-3. FUSE REPLACEMENT}

The Model 6010 has a line fuse to protect the instrument from excessive current. This fuse may be replaced by using the procedure described in the following :
```

** WARNING **
**************

```

Disconnect the instrument from the power line and from other equipment before replacing the fuse.
1. Place the end of a flat-blade screwdriver into the slot in the LINE FUSE holder on the rear panel. Push in and rotate the fuse carrier one quarter turn counterclockwise. Release the pressure on the holder and its internal spring will push the fuse and the carrier out of the holder.
2. Remove the fuse and replace it with the proper type using Table 5-1 as a guide.

\section*{CAUTION}

Do not use a fuse with a rating higher than specified or instrument damage may accrue. If the instrument persistently blows fuses, a problem may exist within the instrument. If so, the problem must be rectified before continuing operation.

\section*{5-4. TCXO/CLOCK MULTIPIER OPTION FIELD INSTALLTION (option 1)}

The TCXO/Clock Multiplier option enhances the accuracy, stability and the displayed resolution of the Model 6010. Accuracy is improved to 1PPM. Resolution is increased to a minimum of 8 digits in one second of gate time. The phase lock circuit on the multiplier board also permits a connection of three different reference frequencies to the CLOCK IN BNC connector; \(1 \mathrm{MHz}, 5 \mathrm{MHz}\) and 10 MHz . Selecting the required reference frequency is described in the following.

If purchased with the Model 6010, the option will be factory installed; however the instrument may be easily upgraded in the field by installing the option as described in the following. Software modification is not required. The Model 6010 will automatically sense the presence of the installed option and will adjust the software routines accordingly.

\section*{5-4-1. Option 1 Installation Procedure}
1. Remove the top and bottom covers of the instrument as described in the disassembly instructions in paragraph 5-9.
```

**************
** WARNING **
*************

```

Disconnect the line cord and test leads from the instrument before removing the top cover.
2. Remove U58, shorting link LK1a/LK1b and the shielded wire which is connected to the rear panel CLOCK IN/OUT BNC connector.
3. Assemble and solder J4 and the card guide on the main board as shown in Figure 5-1.
4. Slide the option board along the card guide and push the card down until it locks into place

\section*{CAUTION}

Make sure that the option is plugged correctly to the main connector that is, when the option board is secured into place, no pin on the main board should by left free.
4. Solder the loose end of the shielded wire to the rear panel CLOCK IN/OUT BNC connector. Solder the inner wire to the center and the outside shield to the ground lug.
5. Bolt the spacer to the side extrusion. Insert a 6-32 screw through the supporting spacer to secure the board to its place and to prevent the option from loosening during transit.
6. LK1a/LK1b is used for selecting between internal and external references. Proper positioning of LK1a/LK1b is described in Figure 5-2. Note that the rear panel BNC connector is used as an output when the internal reference is selected. When LK1a/LK1b was set to accept an external reference, the same rear panel connector is used as an input for the reference frequency.
7. External reference frequency may be selected from one of three standard frequencies: \(1 \mathrm{MHz}, 5 \mathrm{MHz}\) or 10 MHz . Option 1 has to be set to accept one of these frequencies. The required frequency may be selected by changing the position of LK2. Refer to Figure 5-2 for correct placement of LK2.
8. Replace the bottom and top covers.
9. Turn on the power and observe the power up procedure. If no other option is installed the instrument will display the following:
6010-1

This reading indicates that the instrument accepted the installed option.

Applying a wrong reference frequency to the rear panel connector and trying to measure frequency will cause the Model 6010 to display the following message:
no ref
This reading indicates that the instrument can not lock to the external reference frequency. When such a reading occur, check the position of LK2 as described in the above.

Figure 5-1. TCXO/Clock Multiplier Option Field Installation.

Figure 5-2. Reference Frequency and INT/EXT Clock Selection.

\section*{5-5. 1.3 GHz INPUT OPTION FIELD INSTALLATION (option 2)}

The 1.3 GHz input option expands the capability of the Model 6010 by allowing it to measure frequencies up to 1.3 GHz (Typically 1.5 \(\mathrm{GHz})\). If purchased with the Model 6010, the option will be factory installed; however the instrument may be easily upgraded in the field by installing the option as described in the following procedure.

\section*{5-5-1. Option 2 Installation Procedure}
1. Remove the top cover of the instrument as described in the disassembly instructions in paragraph 5-9.
\begin{tabular}{r}
\(* * * * * * * * * * * *\) \\
\\
\\
\\
\\
\\
\(* * * * * * * * * * * * *\)
\end{tabular}

Disconnect the line cord and test leads from the instrument before removing the top cover.
2. Assemble and solder J3 on the main board as shown in Figure 5-2.
3. Bolt the spacers to the side extrusion. Insert a 6-32 screw through the option board to the supporting spacer to secure the board to its place. Use lock-washers to prevent the option from loosening during transit.
4. Plug the loose end of the flat cable to J3 and press the connector to secure it to its place. Make sure that the cable is positioned properly, that pin 1 is connected to pin 1 on the main board and that no pin on the main board is left free.
5. Solder the loose end of the shielded wire to the front panel Channel C BNC connector. Solder the inner wire to the center and the outside shield to the ground lug.

Figure 5-3. 1.3 GHz Input Option Installation
6. Replace the bottom and top covers.
7. Turn on the power and observe the power up procedure. If no other option is installed the instrument will display the following:

6010-2

This reading indicates that the instrument accepted the installed option and is now ready to take measurements of frequencies up to 1.3 GHz .

\section*{5-6. ANALOG OUTPUT OPTION (option 3)}

The analog output option expands the capability of the Model 6010 by providing, through a rear panel BNC connector, a high accuracy dc voltage. This dc voltage is directly proportional to any three selectable adjacent digits. This voltage may be later used to drive a chart recorder or XY plotter. If purchased with the Model 6010, the option will be factory installed. Option 3 can not be installed in the field; however the instrument may be sent to the factory for an upgrade. Consult your nearest service center when such an upgrade is required.

To check if option 3 is installed in your Model 6010, turn the power on and observe the power-up procedure. If no other option is installed the instrument will display the following:
```

6010-3

```

This reading indicates that option 3 is installed. For other indications during power-up sequence refer to section 3 paragraph 3-4.

\section*{5-7. GPIB INTERFACE OPTION FIELD INSTALLATION (option 4)}

The GPIB (general purpose interface bus) option when installed permit a connection to an A.T.E bus controllable system. Detailed information on the IEEE488 standard is available in Section 4 of this manual. If purchased with the Model 6010, the option will be factory installed; however the instrument may easily be upgraded in the field by installing the option as described in the following procedure.

\section*{5-7-1. Option 4 Installation Procedure}
1. Remove the top cover of the instrument as described in the disassembly instructions in paragraph 5-9.
\[
\begin{aligned}
& * * * * * * * * * * * * * \\
& * * \text { WARNING } \\
& \text { ********************)}
\end{aligned}
\]

Disconnect the line cord and test leads from the instrument before removing the top cover.
2. Assemble U47 (8291), U48 (75160) and U49 (75161) as shown in Figure 5-4.
3. Remove the small plate that covers the rear panel GPIB opening.
4. Place the GPIB connector onto the rear panel and bolt the
special spacers which are provided with this option, to the rear panel. It is important to position the GPIB connector exactly in the center of the opening otherwise the mating connector will not fit. Also only use the special spacing screws that are supplied with this option. Use lock-washers to prevent the option from loosening during transit.
5. Plug the loose end of the flat cable to J2 and press the connector to secure it to its place. Make sure that the cable is positioned properly, that pin 1 is connected to pin 1 on the main board and that no pin on the main board is left free.

Figure 5-4. GPIB Interface Option Installation
6. Replace the top cover.
7. Turn on the power and observe the power up procedure. If no other option is installed the instrument will display the following:

6010-4
This reading indicates that the instrument accepted the installed option and is now ready to operate on a bus controlled system.

\section*{5-8. SELECTING AN EXTERNAL REFERENCE}

Model 6010 offers two options for the internal time base clock; a standard 5PPM oscillator and an optional 1PPM TCXO (option 1). These options are enough to satisfy most accuracy requirements; however, in applications where such an inaccuracy is a limiting factor, external standard may be applied to the counter. The basic accuracy of the Model 6010 is then converted to the accuracy of the applied frequency source.

Model 6010 features a rear panel input/output BNC connector designated as CLOCK 10 MHz OUT / EXT IN. This connector serves two functions; when an internal clock is selected, a 10 MHz signal from the internal time base circuit is available at this output. While using the instrument with an external reference, a signal is applied to the same connector.

Model 6010 is supplied with the instrument set to operate with the internal time base and with a 10 MHz signal available at the rear panel CLOCK output. Information of modifying the instrument to accept an external reference signal when option 1 is installed is given in paragraph 5-4-1. with standard time base clock proceed to modify the instrument as follows:
1. Remove the top cover of the instrument as described in the disassembly instructions in paragraph 5-9.
```

***************
** WARNING **
*************

```

Disconnect the line cord and test leads from the instrument before removing the top cover.
2. Refer to Figure 5-5 and locate LK1 at the rear of the instrument near the power transformer.
3. The position of the two shorting links determines if the instrument is set to operate with an internal or external clocks. Position the shorting links as required.

Figure 5-5. External/Internal time base clock selection

\section*{5-9. DIASSEMBLY INSTRUCTIONS}

If it is necessary to troubleshoot the instrument or replace a component, use the following disassembly procedure to remove the top and bottom covers:
1. Remove the four screws that secure each of the top and the bottom covers
2. Grasp the top cover at the side and carefully lift it off the instrument. Similarly remove the bottom cover.
3. When replacing the covers, reverse the above procedure.

\section*{5-10. SPECIAL HANDLING OF STATIC SENSITIVE DEVICES}

MOS devices are designed to operate at a very high impedance levels for low power consumption. As a result, any normal static charge that builds up on your person or clothing may be sufficient to destroy these devices if they are not handled properly. When handling such devices, use precautions which are described in the following to avoid damaging them.
1. The MOS ICs should be transported and handled only in containers specially designed to prevent static build-up. Typically, these parts will be received in static-protected containers of plastic or foam. Keep these devices in their original containers until ready for installation.
2. Remove the devices from the protective containers only at a properly grounded work station. Also ground yourself with a suitable wrist strap.
3. Remove the devices only by the body; do not touch the pins.
4. Any printed circuit board into which the device is to be inserted must also be grounded to the bench or table.
5. Use only anti-static type solder sucker.
6. Use only grounded soldering irons.
7. Once the device is installed on the PC board, the device is normally adequately protected, and normal handling resume.

\section*{5-11. CLEANING}

Model 6010 should be cleaned as often as operating condition require. Thoroughly clean the inside and the outside of the instrument. Remove dust from inaccessible areas with low pressure compressed air or vacuum cleaner. Use alcohol applied with a cleaning brush to remove accumulation of dirt or grease from connector contacts and component terminals.

Clean the exterior of the instrument and the front panel with a mild detergent mixed with water, applying the solution with a soft, lint-free cloth.

\section*{5-12. REPAIR AND REPLACEMENT}

Repair and replacement of electrical and mechanical parts must be accomplished with great care and caution. Printed circuit boards can become warped, cracked or burnt from excessive heat or mechanical stress. The following repair techniques are suggested to avoid inadverant destruction or degradation of parts and assemblies.

Use ordinary \(60 / 40\) solder and 35 to 40 watt pencil type soldering iron on the circuit board. The tip of the iron should be clean and properly tinned for best heat transfer to the solder joint. A higher wattage soldering iron may separate the circuit from the base material. Keep the soldering iron in contact with the PC board for a minimum time to avoid damage to the components or printed conductors.

To desolder components use a commercial " solder sipper ", or better, solder removing SOLDER - WICK, size 3. Always replace a component with its exact duplicate as specified in the parts list.

\section*{5-13. PERFORMANCE CHECKS}

The following performance checks verify proper operation of the instrument, and should normally be used :
a. As part of incoming inspection of instrument specifications;
b. As part of troubleshooting procedure;
c. After any repair or adjustment, before returning instrument to regular service.

\section*{5-13-1. Environmental Conditions}

Tests should be performed under laboratory conditions having an ambient temperature of \(25 \pm 5{ }^{\circ} \mathrm{C}\) and a relative humidity of less than \(80 \%\). If the instrument has been subjected to conditions outside these ranges, allow at least one additional hour for the instrument to stabilize before beginning the adjustment procedure.

\section*{5-13-2. Warm-Up Period}

Most equipment is subject to at least a small amount of drift when it is first turned on. To ensure accuracy, turn on the power to the Model 6010 and allow it to warm-up for at least 30 minutes before beginning the performance tests procedure.

\section*{5-13-3. Recommended Test Equipment}

Recommended test equipment for troubleshooting, calibration and performance checking is listed in table 5-2. Test instruments other than those listed may be used only if their specifications equal or exceed the required minimal characteristics.

Table 5-2. Required Test Equipment.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Instrument } & Recommended Model & \multicolumn{1}{c|}{ Minimum Specifications } & \multicolumn{1}{c|}{ Use * } \\
\hline DMM & Tabor 4121 & \(.1 \mathrm{~V}-100 \mathrm{VDC} \mathrm{0.05} \mathrm{\%}, \Omega\) & \(\mathrm{P}, \mathrm{A}, \mathbf{T}\) \\
\hline Pulse Generator & Tabor 8201 & \(0.5 \mathrm{Sec}-20 \mathrm{nSec}\) & P \\
\hline Signal Generator & HP 8660A/C & \(1 \mathrm{MHz-1300MHz}\) & \(\mathrm{P}, \mathrm{A}\) \\
\hline DCV Calibrator & Fluke & \(1 \mathrm{~V}-100 \mathrm{~V} 0.01 \%\) & A \\
\hline Oscilloscope & Tektronics 465 & 100 MHz bandwidth & T \\
\hline 10 MHz Standard & Oscillatec & \(10 \mathrm{MHz} \pm 10-12\) & \(\mathrm{P}, \mathrm{A}\) \\
\hline
\end{tabular}
* \(\mathrm{P}=\) Performance Test, \(\mathrm{A}=\) Adjustments, \(\mathrm{T}=\) Troubleshooting

\section*{5-14. PERFORMANCE CHECKS PROCEDURE}

5-14-1. CHANNELS A AND B SENSITIVITY CHECK

Equipment: Synthesized signal generator
Procedure:
1. Connect the test equipment as described in Figure 5-6.

Figure 5-6. Channels A and B Sensitivity Test Set-up.
2. Press Model 6010 push-buttons in the following sequence: [2nd], [DCL].
3. Set Synthesizer frequency and amplitude as given in the following table and verify a stable counter readings as follows: (Apply the signal through a \(50 \Omega\) feed-through termination).
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
SYNTHESIZER \\
FREQUENCY
\end{tabular} & SIGNAL LEVEL (rms) & \begin{tabular}{c}
REQUIRED COUNTER \\
READING
\end{tabular} & ALIOWED ERROR \\
\hline 1 MHz & 35 mV & \(1.0000000 \mathrm{E}+6(*)\) & \(\pm 2 \mathrm{~Hz}\) \\
\hline 80 MHz & 35 mV & \(80.00000 \mathrm{E}+6(*)\) & \(\pm 2 \mathrm{LSD}\) \\
\hline 100 MHz & 35 mV & \(100.000000 \mathrm{E}+6\) & \(\pm 2 \mathrm{~Hz}\) \\
\hline 125 MHz & 50 mV & \(150.000000 \mathrm{E}+6\) & \(\pm 2 \mathrm{~Hz}\) \\
\hline
\end{tabular}
* Add one more 0 when option 1 is installed.
4. Change synthesizer frequency setting to 10 MHz and signal level setting to 25 mV rms.
5. Press [LPF] push-button and observe that the counter does not process any more readings.
6. Again press [LPF] and then [x10] push-button and observe that the Model 6010 still does not process readings.
7. Change synthesizer amplitude level setting to 250 mV rms.
8. Verify that counter reading is \(10 \mathrm{MHz} \pm 2 \mathrm{~Hz}\).
9. Modify the connections in Figure 5-5 above so that the synthesizer will now be connected to Channel B. Select [FREQ B]
10. Repeat the procedure above to verify Channel \(B\) sensitivity.

5-14-2. CHANNEL C SENSITIVITY CHECK

Equipment: Synthesized signal generator
Procedure:
1. Connect the test equipment as described in Figure 5-7.

Figure 5-7. Channel C Sensitivity Test Set-up.
2. Press Model 6010 push-buttons in the following sequence: [2nd], [DCL] and then [FREQ C].
3. Set Synthesizer frequency and amplitude as given in the following table and verify a stable counter readings as follows:
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
SYNTHESIZER \\
FREQUENCY
\end{tabular} & SIGNAL LEVEL (rms) & \begin{tabular}{c}
REQUIRED COUNTER \\
READING (*)
\end{tabular} & ALLOWED ERROR \\
\hline 100 MHz & 25 mV & \(100.0000 \mathrm{E}+6\) & \(\pm\) LSD \\
\hline 500 MHz & 25 mV & \(500.0000 \mathrm{E}+6\) & \(\pm\) LSD \\
\hline 1000 MHz & 25 mV & \(1.0000000 \mathrm{E}+9\) & \(\pm\) LSD \\
\hline 1300 MHz & 50 mV & \(1.300000 \mathrm{E}+9\) & \(\pm\) LSD \\
\hline
\end{tabular}
* Add one more 0 when option 1 is installed.

\section*{5-14-3. PERIOD A, PERIOD A AVERAGED OPERATION CHECK}

Equipment: Synthesized signal generator

Procedure:
1. Connect the test equipment as described in Figure 5-8.

Figure 5-8. Period A and Period A Averaged Test Set-up.
2. Press Model 6010 push-buttons in the following sequence: [2nd], [DCL], [PER A].
3. Set Synthesizer frequency to 1 MHz and amplitude level to 50 mV rms. Apply the signal through a \(50 \Omega\) feed-through termination.
4. Verify a stable counter readings as follows:
\[
\begin{array}{rl}
1.0 & \mathrm{E}-6
\end{array} \quad \pm 1 \mathrm{LSD} \text { or } \quad 1 .
\]
5. Press [2nd] and then [AVG] push-buttons.
6. Set Synthesizer frequency to 125 MHz and amplitude level to 50 mV rms.
7. Verify a stable counter readings as follows:
\begin{tabular}{rll}
8.000000 & E-9 & \(\pm 1\) LSD or \\
8.0000000 & E-9 & \(\pm 1\) LSD when option 1 is installed
\end{tabular}

\section*{5-14-4. RATIO A/B OPERATION CHECK}

Equipment: Synthesized signal generator
Procedure:
1. Connect the test equipment as described in Figure 5-9.
2. Press Model 6010 push-buttons in the following sequence: [2nd], [DCL], [A/B], [AC B].
3. Set Synthesizer frequency to 125 MHz and amplitude level to 50 mV rms. Apply the test signal through a \(50 \Omega\) feed-through termination.

Figure 5-9. Ratio A/B Test Set-up.
4. Verify a stable counter readings as follows:
12.5000000 \(\pm 1\) LSD

5-14-5. T.I A to B, T.I. A to B AVG and RISE A OPERATION CHECK

Equipment: Pulse generator

Procedure:
1. Connect the test equipment as described in Figure 5-10.

Figure 5-10. Rise A, T.I A to B and Averaged Test Set-up.
2. Press Model 6010 push-buttons in the following sequence: [2nd], [DCL], [TI A to B], [A], and [COMMON A].
3. Set Pulse generator parameters as follows:

Output Waveform - Pulse
Pulse Period - \(8 \mu \mathrm{Sec}\)
Pulse Width - \(2 \mu \mathrm{Sec}\)
Pulse Amplitude - \(5 \mathrm{Vp}-\mathrm{p}\) Pulse DC Offset - O V
4. Verify a stable counter readings as follows:
\[
\begin{array}{rll}
6.0 & \text { E-6 } & \pm 2 \\
6.00 & \text { LSD or } \\
\pm 20 & \text { LSD when option } 1 \text { is installed }
\end{array}
\]
5. Select a negative slope at Channel B.
6. Verify a stable counter readings as follows:
\[
\begin{array}{rll}
2.0 & \mathrm{E}-6 & \pm 2 \\
2.00 & \text { LSD or } \\
2-6 & \pm 11 & \text { LSD when option } 1 \text { is installed }
\end{array}
\]
7. Press [2nd] and then [AVG] to select AVG function.
8. Verify a stable counter readings as follows:
\begin{tabular}{rll}
2.000 & \(\mathrm{E}-6\) & \(\pm 110\) LSD or \\
\(2.0000 \mathrm{E}-6\) & \(\pm 1100\) LSD when option 1 is installed
\end{tabular}
9. Modify Pulse generator leading edge parameter to 100 nSec .
\[
\begin{array}{rlll}
6.0 & \text { E-6 } & \pm 2 & \text { LSD or } \\
6.00 & \text { E-6 } & \pm 20 & \text { LSD when option } 1 \text { is installed }
\end{array}
\]
10. Press [2nd], [DCL] and then [RISE A] to select the rise time measurement function.
11. Verify a stable counter readings as follows:

100 E-9 \(\pm 10\) LSD or
100.0 E-9 \(\pm 100\) LSD when option 1 is installed

\section*{5-14-6. PHASE A to B OPERATION CHECK}

Equipment: Pulse generator
Procedure:
1. Connect the test equipment as described in Figure 5-11. It is essential that both cables to channels A and B are exactly equal in length.
2. Press Model 6010 push-buttons in the following sequence: [2nd], [DCL], [\(\theta\) A-B], [A].
3. Set Pulse generator parameters as follows: (Apply the signal through \(50 \Omega\) feed-through termination)
\begin{tabular}{ll}
Output Waveform & - Square wave \\
Frequency & -15 KHz \\
Amplitude & \(-5 \mathrm{Vp}-\mathrm{p}\) \\
Offset & -0 V \\
Symmetry & \(-50 \%\)
\end{tabular}

Figure 5-11. Phase A to B Test Set-up.
4. Verify a stable counter readings as follows:
\[
180.00 \quad \pm 2.00
\]

5-14-7. TOTALIZE B OPERATION CHECK
Equipment: Pulse generator
Procedure:
1. Connect the test equipment as described in Figure 5-12.

Figure 5-12. Totalize B Test Set-up.
2. Press Model 6010 push-buttons in the following sequence: [2nd], [DCL], [TOT B] and then [CLR].
3. Set Pulse generator parameters as follows:

Output Waveform - Square wave
Trigger Mode - Burst Trigger Source - EXT.
Frequency - 10 MHz Trigger Slope - Positive
Amplitude - 5 Vp-p Burst - 349525
4. Connect the test signal through a \(50 \Omega\) feed-through termination. Press the pulse generator MANUAL trigger push-button. Verify a counter readings as follows:

349525
5. Again press the pulse generator MANUAL trigger push-button. Verify a counter readings as follows:

699050

5-14-8. AUTO TRIGGER LEVEL A and B OPERATION CHECK

Equipment: Pulse generator

Procedure:
1. Connect the test equipment as described in Figure 5-13. (Apply the test signal through \(50 \Omega\) feed-through termination)

Figure 5-13. Auto Trigger A and B Test Set-up.
2. Press Model 6010 push-buttons in the following sequence: [2nd], [DCL], [2nd], [AUTO TRIG] and then [TL A].
3. Set Pulse generator parameters as follows:
\begin{tabular}{ll}
Output Waveform & - Square wave \\
Frequency & -50 KHz \\
Amplitude & \(-1.6 \mathrm{Vp}-\mathrm{p}\) \\
Offset & -3.8 V \\
Symmetry & \(-50 \%\)
\end{tabular}
4. Verify that trigger level A reading is as follows:
\[
3.80 \mathrm{v} \pm 0.20 \mathrm{v}
\]
5. Modify the connections in Figure 5-12 above so that the pulse generator will now be connected to Channel B.
6. Press Model 6010 push-buttons in the following sequence: [2nd], [DCL], [FREQ B], [2nd], [AUTO TRIG] and then [TL B].
7. Repeat the procedure above to verify Channel B auto trigger level operation.

5-14-9. DELAY OPERATION CHECK

Equipment: Pulse generator

Procedure:
1. Connect the test equipment as described in Figure 5-14.

Figure 5-14. Delay Test Set-up.
2. Press Model 6010 push-buttons in the following sequence: [2nd], [DCL], [PER A], [2nd] and then [DELAY].
3. Set Pulse generator parameters as follows:

Output Waveform - Square wave
Frequency - 20 MHz
Amplitude - \(5 \mathrm{Vp}-\mathrm{p}\)
Offset - 0 v
Symmetry - 50\%
4. Verify a stable counter reading as follows:

1 Sec \(\pm 5 \mathrm{mSec}\)

5-14-10. USER GATE OPERATION CHECK

Equipment: Pulse generator

\section*{Procedure:}
1. Connect the test equipment as described in Figure 5-15.

Figure 5-15. User Gate Test Set-up.
2. Press Model 6010 push-buttons in the following sequence: [2nd], [DCL] and then [AC A].
3. Select the USER GATE function on the counter. (Refer to section 3 paragraph 3-17).
4. Set Pulse generator frequency to 5 MHz .
5. Verify a stable counter reading as follows:
```

10.00000 E+6 \pm1 LSD or
10.000000 E+6 \pm1 LSD when option 1 is installed

```

5-14-11. ANALOG OUTPUT OPERATION CHECK

Equipment: DMM
Procedure:
1. Connect the test equipment as described in Figure 5-16. Apply the test signal through a \(50 \Omega\) feed-through termination.
2. Press Model 6010 push-buttons in the following sequence: [2nd], [DCL], [AC A], [2nd] and then [A OUT].
3. Use the VERNIER UP bush-button to select the following reading on the display: (Refer to section 3 paragraph 3-21).

4. Press [2nd] and then [OFST] push-buttons.

Figure 5-16. Analog Output Test Set-up.
5. Use the VERNIER UP bush-button to modify the offset to 800. (Refer to section 3 paragraph 3-21).
6. Verify a DMM reading as follows:
\[
9.000 \mathrm{v} \pm 0.005 \mathrm{~V}
\]

5-14-12. TIME BASE ACCURACY CHECK

Equipment: 10 MHz standard
Procedure:
1. Connect the test equipment as described in Figure 5-17.

Figure 5-17. Time Base Accuracy Test Set-up.
2. Press Model 6010 push-buttons in the following sequence: [2nd], [DCL], [2nd] and then [AUTO TRIG].
3. Verify a stable counter reading as follows:
\[
\begin{aligned}
& 10.000000 \mathrm{E}+6 \pm 50 \mathrm{LSD} \text { or } \\
& 10.0000000 \mathrm{E}+6 \pm 100 \mathrm{LSD} \text { with option } 1 \text { installed }
\end{aligned}
\]

\section*{THEORY OF OPERATION}

\section*{6-1. INTRODUCTION}

This section contains an overall functional description of the Model 6010 as well as detailed circuit analysis of the various sections of the instrument. Information pertaining to the standard IEEE interface and the various options are also included.

Information is arranged to provide a description of individual functional circuit blocks. As an aid to understanding, the descriptions are keyed to accompanying block diagrams and simplified schematics. Detailed schematics and component layout drawings are located at the end of this instruction manual.

\section*{6-2. OVERALL FUNCTIONAL DESCRIPTION}

The Model 6010 is a 9 digit counter with 15 different measurement functions as standard and 1 additional measurement function as an option. The counter utilizes a modern technique which combines both reciprocal and conventional measurement techniques hence, increasing resolution in low frequency measurements as well as high frequency measurements; as compared to other available counters which utilize the more conventional-fixed-gate-time technique. As an example, a conventional counter measuring 1 KHz with a gate time of 1 second will display a resolution of 1 Hz where Model 6010 with the same gate time will always display a minimum of seven digits of resolution (eight digits with option 1).

The heart of the instrument comprises two counting registers; N1 and N2, two synchronizers, selectors and gates. Figures 5-1 and 5-2 demonstrate the inter-connection of these four elements. The Model 6010, while performing frequency measurements, will automatically determine which one of these configurations are to be used. The criteria for this decision is built into the software. However, under certain conditions the counter can only operate using the reciprocal technique (e.g. Frequency \(C\) and single shot frequency measurements).

During frequency measurement, using the reciprocal measurement technique (Figure 5-1). Selector 1 routes the input signal (F) to clock 1 (CLK 1). Selector 2 routes the reference clock signal to clock 2 (CLK 2). The gate time (GT) is generated by the CPU and is synchronized to the unknown input signal (CLK 1) in such a way that the synchronized gate time 1 (SGT 1) now has a period with an exact integer multiple of pulses from the unknown input signal. Counter N1 then totalizes the number of input pulses during the SGT 1.

Synchronizer \#2 generates the synchronized gate time 2 (SGT 2) from SGT 1. SGT 2 now has a period with an exact integer multiple of pulses from the reference clock signal. Counter \(N 2\) totalizes the number of reference clock pulses (CLK 2). The CPU then computes the result to be displayed, using the following formula:
\[
F=\frac{N 1}{N 2 \times T} \quad \begin{aligned}
& \text { where; } T=\text { the period of } \\
& \text { the reference clock }
\end{aligned}
\]

Figure 6-1. Reciprocal Frequency Measurement.
While performing frequency measurements above 10 MHz (100 MHz with option 1), the inter-connection configuration is automatically changed to the conventional mode of operation, as shown in Figure 5-2.

Figure 6-2. Conventional Frequency Measurement.

Figure 5-3. Model 6010 - General Block Diagram

In this case, selector 2 routes the input signal (F) to clock 2 (CLK 2). Selector 1 routes the reference clock signal to clock 1 (CLK 1). The gate time (GT) which is generated by the CPU is synchronized to clock 1 (CLK 1) in such a way that the synchronized gate time \#1 (SGT 1) now has a period with an exact integer multiple of the reference clock pulses. Counter \(N 1\) then totalizes the number of the reference clock pulses during SGT 1. Synchronizer \#2 generates the synchronized gate time 2 (SGT 2) from SGT 1. SGT 2 now has a period with an exact integer multiple of pulses from the input signal (F). Counter N 2 totalizes the number of input signal pulses (CLK 2). The CPU then computes the result to be displayed, using the following formula:
\[
F=\frac{N 2}{N 1 \times T}
\]
where; \(T=\) the period of the reference clock (CLK)

A simplified block diagram of the complete Model 6010 is given in Figure 5-3. The input signal is applied through the input amplifiers to switching circuits which in turn routes the signals to the correct counting circuits. If channel \(C\) is installed, a signal from the Channel C input terminal will pass through the channel C input amplifier to the internal selectors. The CPU, working under software control, then converts the signals into a form suitable for displaying on the front panel or for the IEEE bus.

\section*{6-3. ANALOG CIRCUITRY}

The following paragraphs contain a description of the input circuits, measurement logic circuits, frequency multiplier and of the power supply. These circuits may be found on schematic diagrams located at the end of this manual.

6-3-1. Input Circuits \(A\) and \(B\)

\section*{NOTE}

Channels A and B are identical in terms of components and operation. Therefore, the following description, which reviews only Channel A circuits applies to channel B as well. Note that letter designations for components in Channel A are different for similar components in Channel B.

The signal which is applied to the Channel A input terminal is preconditioned in front of the amplifier circuit by means of relays and electronic components as follows:

Coupling: Coupling is controlled by a relay K 1 and capacitor C1.
When instrument is DC coupled, K1 contacts are closed. When instrument is AC coupled, K1 contacts are open and C1 blocks the DC components of the input signal.

Attenuation: Attenuation is controlled by relay K3, resistor network R3 and R39 and capacitor network C3 and C6. When K2 shorts between contacts 1 and 7, R3 and C6 are shorted and there is no attenuation. Actuating K2 shorts between contacts 7 and 14 thereby introduces a x10 voltage attenuation.

Filtering: The low pass filter is controlled by relay K4. Contacts on K3 are normally closed; shorting R6. When the relay contact open, the impedance of R16 and the capacitance of Q2 act as a low pass filter.

Separate/Common: The Separate/Common function is controlled by relays K 2 and K 6 . The counter is in separate mode when K 6 is activated and K2 is deactivated. Activating K2 and deactivating K6 disconnects Channel B input connector from its associated input circuit. Input connector for Channel A is now connected to both Channel A and B.

Input Protection: Front panel input conditioning are capable of handling signals within the specified dynamic range of the Model 6010. Protection of the input circuit from over-voltage signals (up to the specified limits) are done by R4, clipping diodes within U10, C8, R7, CR 2 and Q2.

Amplifier: The amplifier comprises a band split/differential amplifier. This section consists of a high frequency amplifier - Q2 and low frequency differential amplifier - U10 and Q5. The two bands are summed at the junction of R12 and R10 and then buffered by Q3. The diode network - CR5 to CR8 limit the amplitude of the signal which is then applied to the comparator U12a. U12a operates as a Schmidt trigger amplifier which translates, for the preceding stages, the various input waveforms to the appropriate ECL logic levels.

Trigger Level Control: The trigger level control circuit generates a DC voltage which is directly proportional to the required input threshold point. This voltage is then applied through R22 to the negative input of the differential amplifier which was previously discussed. U7 and U6 are a serial to parallel converters which control the \(D\) to \(A\) converter - U8, U9a U9b and their associated components. The output of \(U 9 b\) generates \(a\) dc voltage in the range of -5 V to +5 V . This voltage is then applied, in parallel, to the rear panel TRIGGER LEVEL A and through the voltage divider R21 and R35 to the negative input of the differential amplifier.

\section*{6-3-2. Input Circuit \(C\)}

The signal which is applied to the Channel \(C\) input terminal is AC coupled through C1 and through the amplitude limiting network CR1 to CR4, CR12 and CR13 to the input of the first stage amplifier. The amplifier consists on a two stage amplifiers. Q1 and Q2 with their
associated components form the first stage while Q3 and Q4 and their associated components form the second stage. The output of the second stage amplifier - the collector of Q4 is AC coupled through C20 to a divide by 256 - U1. The output is also coupled through C23 to a peak level detector CR10 and C25, comparator U2 and its associated components. When the amplitude level at the input of \(U 1\) is insufficient to successfully operate it, the emitter of \(Q 6\) is forced to ECL high level thus eliminating false oscillation of \(U 1\) to be sensed by the following stage.

\section*{6-3-3. 10MHz Standard Reference Oscillator}

The reference oscillator circuit comprises an hybrid oscillator U57, buffers U56 and voltage regulator U55. C124, C125 and C126 adjust the oscillator frequency to a known reference. C124 is a coarse adjust and C126 is a fine adjustment. LK1a/b is used for selecting between an internal reference which is generated by U57 and external reference frequency which may be applied to a rear panel BNC connector. CR35, CR36, C120 and R192 protects the rear panel input against accidental overloads. U56d is configured as a Schmidt trigger circuit which converts the external amplitude level to TTL level.

\section*{6-3-4. 10 MHz TCXO Reference Oscillator and x10 Multiplier (Option 1)}

Option 1 board performs two tasks; a) Improving the temperature stability of the internal reference to 1PPM and b) multiplying the reference frequency, either internal or external, to 100 MHz .

The TCXO reference oscillator circuit comprises U1, U2 and input protection circuit CR1, CR2, C2 and R1. U2b buffers the TCXO output. U2c buffers the 10 MHz to the rear panel BNC connector. LK1a/b is used for selecting between an internal reference which is generated by U1 and external reference frequency which may be applied to the rear panel BNC connector. CR1, CR2, C2 and R1 protects the rear panel input against accidental overloads. U2d is configured as a Schmidt trigger circuit which converts the external amplitude level to TTL level.

The reference frequency is divided by \(U 3\) to 1 MHz and then is phase locked and internally multiplied to generate a stable 100 MHz . The 100 MHz signal is related both in phase and accuracy to the reference oscillator.

The 1 MHz signal from the selected reference is applied to the phase detector - U5. U5 compares the phase from U4 to the phase of the reference signal. U4 divides the VCO frequency, coming from U7, by 100 to generate the feedback signal to the phase comparator. U6 operates as a low pass filter to smooth the correction pulses from the output of U5. The dc level at the output of U6, controls through CR3 the oscillation frequency of U7. Q1 buffers the 100 MHz signal for the next stage. U2a senses the presence of the reference signal and blocks the 100 MHz signal to the next stage when the external signal is outside of the locking range of the phase lock circuit.

\section*{6-3-5. Measurement Logic Section}

The measurement logic section is a block which controls various switching, routes the internal signals to the correct ports. It also controls the sequence of the gate and resets and synchronizes the main registers N 1 and N2 for the CPU. Figures 5-4 to 5-9 show the routes for the input signal and the reference signal in every measurement function. The following is a brief explanation of the various segments in the measurement logic section

Control: The control circuit consists of U15, U14 and U13.
Information from the CPU is sent in a serial form to the control ics which in term convert the serial information to a parallel format. The parallel outputs of these ICs are being used to control the signal selectors, and the signal routing to the various sections within the measuring logic section. Q11 through Q13 convert the TTL logic levels from the CPU to an appropriate voltage levels for U 15 (0 V to -5.2 V).

Signal Selector: The signal selector circuit comprises U19, U20, \(\mathrm{U} 21, \mathrm{U} 25\), and U 26 . The function of the signal selector is to route one of Channel \(A\) input, Channel \(B\) input, Channel \(C\) input or the reference clock to the appropriate processing sections.

Time Interval Section: The time interval section circuit consists of a dual \(D\) flip-plop U17a/b and gates U18a,b and \(c\) and U19b. U17a receives the start signal and U17b receives a stop signal. Following a reset signal at the reset input of \(\mathrm{U} 17 \mathrm{a} / \mathrm{b}\), U 18 c simultaneously produces a single positive pulse (TI) and its complement with a duration which is equal to the time interval between the start and the stop signals, regardless if the start and the stop signals are repetitive. While performing time averaged measurements, these pulses will repeat as long as the gate stays open.

Synchronizer \#1: The synchronizer \#1 consists of a D flip flop U22b and a gate \(\mathrm{U} 26 \mathrm{~b} / \mathrm{d}\) and their associated components. During reciprocal frequency measurement, a gate signal is applied from the CPU to the D input of U22d and the measured signal is coupled to the CLK input on the same IC. After a reset cycle, and assuming that a signal is present at the appropriate input terminal, the output of U 22 b will generate a pulse with an approximate width of the original gate signal from the CPU, but with a new adjusted width which is equal to an integer number of periods of the signal being measured. This pulse will be used as the synchronized \#1 (SGT 1) gating signal throughout the instrument. In conventional frequency measurements, in the above description, the gate time is synchronized to the reference clock. SGT 1 opens the gate U26d for the appropriate signal to be later divided and counted by N1 dividing chain.

Synchronizer \#2: The synchronizer \#2 consists of a D flip flop U29b, gate U28d and their associated components. During reciprocal frequency measurement, SGT 1 signal is applied to the D input of U 29 b . at the same time, the reference clock is applied to the CLK input on the same IC. the output of U29b will generate a pulse SGT 2 with an approximate width of SGT 1, but with a new adjusted width which is equal to an integer number of periods of the reference clock. In conventional frequency measurements, in the above description, the gate time is synchronized to the input signal. SGT 2 opens the gate U28d for the appropriate signal to be later divided and counted by N2 dividing chain.

Signal Identifier: The signal identifier comprises U22a and U31a and their associated components. A signal when present at the appropriate input terminal, is applied to the CLK input of U 22 a , converted to a

TTL level signal with U31a and then fed to a CPU port 1.1. This port is later on being used to flag the presence of a signal at the input terminals. This signal is also used as the arming signal of the counter.

Figure 6-4. FREQ A Reciprocal/PER A Averaged and FREQ A Conventional Signal Flow Diagram.

Figure 6-5. Frequency Ratio A/B Signal Flow Diagram.

Figure 6-6. PER A and T.I A to B Signal Flow Diagram.

Figure 6-7. Pulse A Averaged and T.I A to B Averaged Signal Flow Diagram.

Figure 6-8. Totalize B Infinite Signal Flow Diagram.

Figure 6-9. Totalize B By A and Totalize B By AA Signal Flow Diagram.

Gate Identifier: The gate identifier informs the CPU on the state of the synchronized gate time \#1. The gate identifier circuit also serves as a time stretcher of gate signals with very small periods. The gate identifier consists of U26a, U26c, U31d, R158 and C86.

N1 Counter Chain: The N1 counter chain comprises U30b, U31c, U27a, U23a, U46a and U44 and their associated components. U30b, U27a, U23a and U46a are configured as 7 bit binary up counter with its output connected to U44. U44 is a 32 bit counter with its outputs connected to the data bus. U31c converts the ECL logic level from U30b to TTL.

N2 Counter Chain: The N2 counter chain comprises U29a, Q15, U30a, U31b, U27b, U23b, U46b and U45 and their associated components. U29a, U30a, U27b, U23b and U46b are configured as 8 bit binary up counter with its output connected to U45. U45 is a 32 bit counter with its outputs connected to the data bus. Q15 and U31b convert the ECL logic level from U29a and U30a respectively to TTL.

\section*{6-3-6. Analog Output Option}

The analog output option converts digital information, which is received from the CPU on the data bus, to an analog dc voltage. The dc voltage may range from 0 V to +9.99 V . The analog output section comprises a D/A converter U59, chip select gates U58a/d and their associated components. U59 receives parallel data from the CPU and converts this data to dc levels. LK3 has to be shorted so that the CPU will sense that this option is installed. With LK3 removed, the CPU will simply ignore front panel programming which is associated with this option. The dc voltage from the D/A converter is then routed to the rear panel BNC connector designated as ANALOG OUTPUT.

\section*{6-3-7. Power Supply}

For the following discussions, refer to the power supply schematic at the end of the manual. The power supply is made up of a line fuse, power on-off switch, line voltage selection switch, power transformer, two bridge rectifiers, two monolithic regulators and two discrete regulators which is formed by \(\mathrm{U} 52, \mathrm{Q} 30, \mathrm{Q} 31, \mathrm{Q} 32, \mathrm{Q} 39\), and their associated components.

Fuse F1 is the LINE FUSE which is accessible on the rear panel. S 2 is the LINE VOLTAGE SELECT switch which is accessible on the rear panel to select 115 V or 230 V operation and S 1 is the power on-off switch.

CR25 is used as a full-wave rectifier to provide a sufficient DC voltage for the +12 V and -12 V regulators U 50 and \(U 51\) respectively.

U52b receives a reference voltage of +5 V from the +12 V supply. This reference is then compared to the regulated +5 V . U52b then controls through Q30 the current through the series pass transistor - Q31. The +5 V supply then acts as the reference for the -5.2 V regulated supply. The operation of U52a is similar to the operation of U52b except, U52a operates as an inverting amplifier. CR 29 and CR30 protect the +5 V and the -5.2 V respectively against accidental over-voltage.

\section*{6-4. DIGITAL CIRCUITRY}

Model 6010 operation is supervised by the internal CPU. Through the CPU, the counter measurement process, the front panel switching, display, and IEEE operation are all performed under software control. This section briefly describes the operation of the various sections of the CPU and associated digital circuitry. A simplified block diagram is included for user reference; for more complete circuit details refer to digital schematics at the end of this manual.

\section*{6-4-1. CPU Block Diagram}

A block diagram of the Model 6010 CPU is shown in Figure 5-3. Circuit operation centers around the CPU unit, U39. The 8031 is an 8bit CPU capable of directly addressing up to 64 K bytes of program memory (ROM) and up to another 64 K bytes of data memory (RAM). The CPU works with a 10 MHz clock which is divided internally to provide a bus operation of about 1 MHz .

Software for the CPU is contained in an EPROM (Erasable Programmable Read-Only Memory). U42 is a 27128 EPROM containing 16K bytes of software. Temporary storage is provided by U43, RAMs (Random Access Memory) which can store up to 2048 bytes of information.

Interfacing between the CPU and the IEEE bus is performed by dedicated IEEE-488 bus interface IC, U36. This IC performs many bus functions automatically to minimize CPU overhead. Buffering between the 8291 IC and the IEEE bus lines is done with bus drivers U 21 and U 22.

Interfacing between the CPU to the keyboard and the display is performed by the Keyboard/Display interface IC - U36.

\section*{6-4-2 Memory Mapping}

The 8031 CPU is capable of directly addressing two banks of 64 k \((65,536)\) bytes memory. One bank of memory is the program memory and the second memory bank is the data memory. The selection of the banks is done internally by the CPU. Although the CPU has this large addressing capability, only a portion of the possible memory space is actually needed.

The Model 6010 uses a total of 16 K of program memory stored in the 27128 EPROM U43, and a total of 1 K of data memory is stored in U10 and. The 8031 CPU uses a memory-mapped I/O scheme, additional memory location must be allocated for the various I/O function. All the memory-mapped I/O functions are in the data memory space. Table 5-1 lists the memory locations for the various memory elements.

Because of a partial decoding scheme used in this instrument, for some memory elements, a larger memory slot is allocated than the actual memory needed.

\section*{6-4-3. Address Decoding}

The CPU has a total of 16 address lines which are used to locate a specific memory slot. The LOW address line (AO to A7) are multiplexed on the address/data bus, and the ALE (address latch enable) signal is used to separate the LOW address from the address/data bus witch is
done by U40 address latch. Since no memory or interface element can fully decode address locations, additional address decoding must be used.

U38 is 1-of-8 decoder. The decoder is enabled when address lines A15 is HIGH. Once the decoder is selected the decoding is done by addressing lines A11, A12 and A13.

Table 6-1. Model 6010 Memory Mapping
\begin{tabular}{|l|c|c|cccc|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c}
Selected \\
Device/Operation
\end{tabular}} & Allocated Memory & \begin{tabular}{c}
Actual Memory \\
Location
\end{tabular} & \multicolumn{3}{|c|}{\begin{tabular}{c}
Address Lines \\
A15 A13 A12 A11
\end{tabular}} \\
\hline \begin{tabular}{l}
Strobes for shift \\
registers
\end{tabular} & \(8000 \mathrm{H}-87 \mathrm{FFH}\) & 8000 H & 1 & 0 & 0 & 0 \\
\hline \begin{tabular}{l}
Digital to analog \\
converters
\end{tabular} & \(8800 \mathrm{H}-8 \mathrm{FFFH}\) & \begin{tabular}{c}
\(880 \mathrm{EH}, 880 \mathrm{DH}\) \\
8803 H
\end{tabular} & 1 & 0 & 0 & 1 \\
\hline GPIB interface & \(9000 \mathrm{H}-97 \mathrm{FFH}\) & \(9000 \mathrm{H}-9007 \mathrm{H}\) & 1 & 0 & 1 & 0 \\
\hline RAM & \(9800 \mathrm{H}-9 \mathrm{FFFH}\) & \(9800 \mathrm{H}-9 \mathrm{BFFH}\) & 1 & 0 & 1 & 1 \\
\hline Hardware reset & A000H - A7FFH & A000H & 1 & 1 & 0 & 0 \\
\hline N1 \& N2 counters & A800H - AFFFH & A800H & 1 & 1 & 0 & 1 \\
\hline \begin{tabular}{l}
Key board and \\
display controller
\end{tabular} & B000H - B7FFH & B000H, B001H & 1 & 1 & 1 & 0 \\
\hline \begin{tabular}{l}
Scan reset for \\
counters N1 \& N2
\end{tabular} & B800H - BFFFH & B800H & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

\section*{6-4-4. Keyboard/Display Interface}

The Keyboard/Display Interface IC U5 is used to control the front panel display and to find out which one of the buttons was pushed.

\section*{6-4-5. IEEE Interface}

The Model 6010 has a built in IEEE-488 interface that allows the instrument to be controlled through the system controller. Commands may be given over the bus and data may be requested from the instrument as well.

The IEEE interface is made up of U47, a 8291 GPIA (General Purpose Interface Adapter), and U48 and U49, which are interface bus drivers. On the CPU side of the GPIA, data transmission is handled much like any other bus transaction. The CPU accesses the GPIA through the usual D0 through D7 data lines. Address decoding for the internal 14 registers (7 read and 7 write) is provided by the CS, WR, RD and A0, A1, A2 terminals.

The output of the 8291 IC is standard IEEE format; the eight data lines (DIO1 through DIO8) the three handshake lines (DAV, NDAC, NRFD), and the five management lines (ATN, REN, IFC, SRQ, EOI), are all active low with approximately zero volts representing a logic one. The two IEEE bus drivers, U48 and U49 are necessary to bring the drive capability of the interface up to the normal IEEE maximum 15 devices.

The GPIA simplifies CPU interfacing to the IEEE bus because many control sequences take place automatically. For example, when a write is done to the data output register, the handshake sequence is automatically performed at the proper time. Without the GPIA chip, complicated CPU routines would be required to accomplish control sequence that are performed automatically.

\section*{SECTION}

\section*{ADJUSTMENTS AND TROUBLESHOOTING}

\section*{7-1. INTRODUCTION}

This section contains information necessary to adjust and troubleshoot the Model 6010, the TCXO and time base multiplier (option 1), the 1.3 GHz channel C input (option 2) and, the analog output (option 3).

\section*{WARNING}

The procedures described in this section are for use only by qualified service personnel. Do not perform these procedures unless qualified to do so. Many of the steps covered in this section may expose the individual to potentially lethal voltages that could result in personal injury or death if normal safety precautions are not observed.

\section*{7-2. ADJUSTMENTS}

\section*{7-2-1. Environmental Conditions}

Adjustments should be performed under laboratory conditions having an ambient temperature of \(25 \pm 5{ }^{\circ} \mathrm{C}\) and a relative humidity of less than \(70 \%\). If the instrument has been subjected to conditions outside these ranges, allow at least one additional hour for the instrument to stabilize before beginning the adjustment procedure.

\section*{7-2-2. Warm-Up Period}

Most equipment is subject to at least a small amount of drift when it is first turned on. To ensure long-term calibration accuracy, turn on the power to the Model 6010 and allow it to warm-up for at least 30 minutes before beginning the adjustment procedure.

\section*{7-2-3. Recommended Test Equipment}

Recommended test equipment for calibration is listed in Table 5-2. Test instruments other than those listed may be used only if their specifications equal or exceed the required characteristics.

\section*{7-2-4. Adjustment Procedures}

All adjustments are performed with the POWER switch ON. The top cover should be removed to allow access to test points and adjustments. Between adjustments, always leave top cover on the unit to keep internal temperature.

\section*{WARNING}

Take special care to prevent contact with live circuits or power line area which could cause electrical shock resulting in serious injury or death. Use an isolated tool when making adjustments. Use plastic or nylon screwdriver when adjusting the time base trimmer as other material will cause confusion in this adjustment.

Refer to Figure 7-1, throughout the following adjustment procedures, for determining adjustment points. Follow the procedure in the sequence indicated because some of the adjustments are interrelated and dependent on the proceeding steps.

Verify that Model 6010 is functioning according to the performance checks. Make sure that all results are within, or close to, the range of the required specifications, otherwise refer to the troubleshooting procedures given later in this section.

Center all trimmers and if necessary, remove selected components and clear the holes to allow a selection of new components.

Perform the following adjustment procedure. If an adjustment can not be made to obtain a specific result, refer to the troubleshooting procedures.

\section*{7-3. ADJUSTMENT PROCEDURE}

7-3-1. POWER SUPPLY ADJUSTMENT
Equipment: DMM
Procedure:
1. Set DMM to DCV measurements. Connect the DMM between ground and the +5 V test point.
2. Adjust R 190 for a DMM reading of \(+5.000 \mathrm{v} \pm 10 \mathrm{mV}\) dc.

7-3-2. TRIGGER LEVEL A ADJUSTMENT
Equipment: DMM, dc voltage calibrator
Procedure:
1. Set DMM to DCV measurements.
2. Set [TL A] to 0.00 V .
3. Measure and record the voltage at U 12 pin 8. Record this voltage with a resolution of \(\pm 0.001 \mathrm{~V}\).
4. Set [TL A] to 5.00 V .
5. Set dc calibrator output setting to +5.000 V .
6. Using a banana to BNC adapter, connect the calibrator output to the Channel A input connector.
7. Re-connect the DMM probes to U 12 pin 8 and adjust R80 to obtain the same voltage level as recorded in step 3.

Figure 7-1. Model 6010 Adjustment Points Location.

\section*{7-3-3. TRIGGER LEVEL B ADJUSTMENT}

Equipment: DMM, dc voltage calibrator
Procedure:
1. Set DMM to DCV measurements.
2. Set [TL B] to 0.00 V .
3. Measure and record the voltage at U12 pin 9. Record this voltage with a resolution of \(\tilde{n} 0.001 \mathrm{~V}\).
4. Set [TL B] to 5.00 V .
5. Set dc calibrator output setting to +5.000 V .
6. Using a banana to BNC adapter, connect the calibrator output to the Channel \(B\) input connector.
7. Re-connect the DMM probes to U12 pin 9 and adjust R81 to obtain the same voltage level as recorded in step 3.

\section*{7-3-4. TRIGGER LEVEL A OFFSET ADJUSTMENT}

Equipment: Function generator, oscilloscope

Procedure:
1. Set function generator controls as follows:
Waveform - Sine
Frequency -1 KHz
Amplitude \(-25 \mathrm{mVp}-\mathrm{p}\)
Offset -0 V
Symmetry - \(50 \%\)
2. Press Model 6010 push-buttons in the following sequence: [2nd], [DCL] and then [AC A].
3. Connect the function generator output to the Channel A input connector.
4. Set oscilloscope time base to \(0.1 \mathrm{mSec} / \mathrm{div}\).
5. Connect the oscilloscope probe to U24 pin 9. Connect the ground lead from the probe to ground.
6. Adjust R83 to obtain a square wave having a \(50 \% \pm 1 \%\) duty cycle on the oscilloscope.

7-3-5. TRIGGER LEVEL B OFFSET ADJUSTMENT
Equipment: Function generator, oscilloscope
Procedure:
1. Set function generator controls as in paragraph 7-3-4.
2. Press Model 6010 push-buttons in the following sequence: [2nd], [DCL], [FREQ B] and then [AC B].
3. connect the function generator output to the Channel \(B\) input connector.
4. Set oscilloscope time base to \(0.1 \mathrm{mSec} / \mathrm{div}\).
5. Connect the oscilloscope probe to U24 pin 14 . Connect the ground lead from the probe to ground.
6. Adjust R84 to obtain a square wave having a \(50 \% \pm 1 \%\) duty cycle on the oscilloscope.

\section*{7-3-6. INPUT A x10 HIGH FREQUENCY ADJUSTMENT}

Equipment: Function generator, oscilloscope
Procedure:
1. Set function generator controls as follows:
Waveform - Square wave
Frequency - 10 KHz
Amplitude -5 Vp-p
Offset -0 V
Symmetry - \(50 \%\)
2. Press Model 6010 push-buttons in the following sequence: [2nd], [DCL] and then [x10 A].
3. Connect the function generator output to the Channel A input connector. Use a \(50 \Omega\) feed-through termination.
4. Connect the oscilloscope probe to the cathode of CR6. Connect the ground lead from the probe to ground.
5. Set oscilloscope and adjust C3 to obtain the best square wave response having minimum overshoot and undershoot.

\section*{7-3-7. INPUT B x10 HIGH FREQUENCY ADJUSTMENT}

Equipment: Function generator, oscilloscope
Procedure:
1. Set function generator controls as in paragraph 7-3-5.
2. Press Model 6010 push-buttons in the following sequence: [2nd], [DCL], [FREQ B] and then [x10 B].
3. Connect the function generator output to the Channel B input connector. Use a \(50 \Omega\) feed-through termination.
4. Connect the oscilloscope probe to the cathode of CR14. Connect the ground lead from the probe to ground.
5. Set oscilloscope and adjust C 28 to obtain the best square wave response having minimum overshoot and undershoot.

7-3-8. STANDARD - 5PPM TIME BASE ADJUSTMENT
Equipment: 10 MHz Standard
Procedure:
1. The following adjustment must be performed in a stable temperature environment of \(25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). Remove the top cover and set C126 to about mid-range. Replace the top cover. Power-up Model 6010 and allow it to operate, for at least « an hour, with its covers closed.
2. Press Model 6010 push-buttons in the following sequence: [2nd] and then [DCL].
3. Connect the 10 MHz standard to the Model 6010 Channel A through a
\(50 \Omega\) feed-through termination.
4. Remove the top cover and adjust C124 to give a reading of:
\[
10.000000 \mathrm{E}+6 \pm 10 \text { LSD }
\]

If range can not be reached, select C125 (in the range of 8 - 10pF) to bring C124 within range.
5. Replace the top cover and allow the Model 6010 to operate with the covers on for an additional period of 15 minutes.
6. Using a plastic material screwdriver, adjust C126 from the rear panel to give a display reading of:
\[
10.000000 \mathrm{E}+6 \pm 2 \mathrm{LSD} .
\]

If range can not be reached, repeat steps 4 through 6.

7-3-9. TCXO TIME BASE ADJUSTMENT (option 1)
Equipment: 10 MHz Standard
Procedure:
1. The following adjustment must be performed in a stable temperature environment of \(25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). Remove the top cover, refer to Figure 5-1 and remove the adjustment plug at the top of the oscillator bulk. Replace the top cover. Power-up Model 6010 and allow it to operate, for at least « an hour, with its covers closed.
2. Press Model 6010 push-buttons in the following sequence: [2nd] and then [DCL].
3. Connect the 10 MHz standard to the Model 6010 Channel A through a \(50 \Omega\) feed-through termination.
4. Remove the top cover and using a plastic-tip screwdriver, adjust the trimming capacitor on top of the TCXO to give a reading of:
\[
10.0000000 \mathrm{E}+6 \pm 10 \mathrm{LSD}
\]
5. Replace the adjustment plug and the top cover and allow the Model 6010 to operate with the covers on for an additional period of 15 minutes.
6. Check if frequency is still in the range as in step 4. If reading shifted, repeat steps 4 through 6.

7-3-10. ANALOG OUTPUT ADJUSTMENT (option 3)
Equipment: DMM

Procedure:
1. Using a BNC cable, connect the 10 MHz reference signal from the rear panel to Channel A input connector
2. Press Model 6010 push-buttons in the following sequence: [2nd], [DCL], [AC A], [2nd] and then [A OUT].
3. Use the VERNIER UP bush-button to select the following reading on the display: (Refer to section 3 paragraph 3-21).
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{_10.0_ _ _ _ _ or} \\
\hline 10.0_ & with option 1 installed \\
\hline
\end{tabular}
4. Press [2nd] and then [OFST] push-buttons.
5. Use the VERNIER UP bush-button to modify the offset to 800. (Refer to section 3 paragraph 3-21).
5. Set the DMM to DCV measurements. Connect the DMM probes through a banana to BNC adapter to the rear panel ANALOG OUTPUT BNC connector. 6. Adjust R168 for a DMM reading as follows:
\[
9.000 \mathrm{~V} \pm 0.001 \mathrm{~V}
\]

\section*{7-4. TROUBLESHOOTING}

The troubleshooting instructions contained in this section are intended for qualified personnel having a basic understanding of analog and digital circuitry. The individual should also be experienced at using typical test equipment as well as ordinary troubleshooting procedures. The information presented here has been written to assist in isolating a defective circuit or circuit section; isolation of the specified component is left to the technician.

\section*{7-4-1. Recommended Test Equipment}

The success or failure in troubleshooting a complex piece of equipment like the Model 6010 depends not only on the skill of the technician, but also relies heavily on accurate, reliable test equipment. Table 6-2 lists the recommended test equipment for a complete troubleshooting and adjustment of the Model 6010. However, it is also possible to troubleshoot Model 6010 with the minimum equipment which is listed in Table 7-1. Other equipment such as logic analyzer, and in-circuit emulator etc, could also be helpful in difficult situation.

\section*{7-4-2. Power-Up Self Diagnostics}

An advanced feature of the Model 6010 is its self diagnosing capabilities. Upon power-up the Model 6010 performs a set of tests which is described in paragraph 3-4. If the Model 6010 locks up due to ROM or RAM fail, there is a little point in attempting to troubleshoot elsewhere unless the micro controller circuit is operating properly.

Table 7-1. Recommended minimum Test Equipment For Troubleshooting
\begin{tabular}{|c|c|c|}
\hline Instrument & Recommended Model & Specifications \\
\hline DMM & Tabor 4121 & \(.005 \%\) basic dc accuracy \\
\hline Pulse Generator & Tabor 8201 & 0.5 Sec - 20 nSec \\
\hline Signal Generator & HP 8660A/C & 1 MHz-1300MHz \\
\hline Oscilloscope & Tektronics 465 & 100 MHz bandwidth \\
\hline
\end{tabular}

\section*{7-5. TROUBLESHOOTING PROCEDURE}

\section*{7-5-1. Power Supply Checks}

It is highly suggested that the first step in troubleshooting the Model 6010, as well as any similar equipment, would be to check the power supply. If the various supply voltages within the instrument are not within the required limits, troubleshooting the remaining circuits can be very difficult. Table 7-2 shows several checks that can be made to the power supplies within the Model 6010. In addition
to the normal voltage checks, it is also a good idea to check the various supplies with an oscilloscope to make sure no noise or ringing is present. In case of a "dead short" between one of the supplies to the common ground, it would be best to disconnect the entire supply section from the remaining of the circuitry and then determine whether the problem is in the power supply or in the remaining circuits. Model 6010 is equipped with such quick-disconnect points, which are located on the bottom side of the main PC board. To access these points, it is necessary to remove the bottom cover and then to remove the solder from these points.

While troubleshooting the power supply section, bear in mind that the +12 V supply also provides the reference voltage to the +5 V . Therefore, it would be impossible to troubleshoot the +5 V supply if the +12 V supply is defective. Similarly, the +5 V supply is used as a reference voltage to the -5.2 V supply.

Table 7-2. Power Supply Checks
\begin{tabular}{|c|c|c|c|}
\hline Step & Item/Component & Required Condition & Remarks \\
\hline 1 & S2 Line Switch & Set to 115 V or 230 V & See paragraph 2 \\
\hline 2 & F1 Line Fuse & Continuity & Remove fuse to check \\
\hline 3 & J1 Line Power & Plugged into live receptacle; power on & \\
\hline 4 & +12V Supply & +12V \(\pm 5\) \% & \\
\hline 5 & U50 Input & +15V minimum & Positive output of CR25 \\
\hline 6 & -12V Supply & -12V \(\pm 5 \%\) & \\
\hline 7 & U51 Input & -15V minimum & Negative output of CR25 \\
\hline 8 & +5V Supply & +5V \(\pm 2 \%\) & Cathode of CR29 \\
\hline 9 & Input to +5 V Supply & Approx. +7V & Positive output of CR28 \\
\hline 10 & Reference to +5 V Supply & +5V \(\pm 5 \%\) & U52b pin 5 \\
\hline 11 & -5.2V Supply & -5.2V \(\pm 2 \%\) & Anode of CR30 \\
\hline 12 & \begin{tabular}{l}
Input to -5.2 V \\
Supply
\end{tabular} & Approx. -7V & Negative output of CR28 \\
\hline 13 & +5v Supply to osc & +5V \(\pm 5 \%\) & U57 pin 8 \\
\hline 14 & Input to +5 V U55 & +12V & U55 input/+12V supply \\
\hline
\end{tabular}

\section*{7-5-2. Digital Circuitry and Display Checks}

The most important section, to be verified after the power supply checks, is the digital section with its various clocks. Problems with
the digital circuitry could cause erratic operation or false display readings. Problems in the clock generator for the CPU and the digital circuit may cause a complete malfunction of the entire section. The CPU would not even start to generate the control lines which makes it impossible to troubleshoot the remaining of the circuitry. Check the various components, associated with the digital circuitry, clocks and the IEEE-488 interface, using the information in Table 7-3.

\section*{7-5-3. Standard 5PPM Reference Oscillator Checks}

The reference oscillator supplies a precise signal to the measurement logic section of the Model 6010. Without this clock the instrument will operate erratically. Verify that a 10 MHz TTL level signal is present at U57 pin 5, U56 pin 6,3 and 8 and at the CLOCK output rear panel connector. Check LK1a/b position.

\section*{7-5-4. TCXO Reference and x10 Multiplier Checks.}

When option 1 is installed, the reference TCXO replaces the standard reference oscillator. The TCXO supplies a precise signal to the measurement logic section of the Model 6010. Without this clock the instrument will operate erratically. The multiplier circuit generates 100 MHz from the 10 MHz reference signal. Problems with the TCXO and the multiplier circuit will definitely cause false results on the Model 6010 or may cause no result at all. Problems in the multiplier circuit may be identified using Table 7-4.

\section*{7-5-5. Trigger Level Checks}

The trigger level circuits control the threshold point where the input circuit triggers. The Model 6010 may not trigger at all on a signal that appears to be within the specified limits. Problems in the trigger circuit may be located using the checks given in Table 7-5.

\section*{7-5-6. Signal Conditioning And Input Circuits Checks}

Problems in these circuits could generate false results on the Model 6010. Tables 7-6 and Table 7-7 list the checks to be made on the signal conditioning and the input circuits respectively.

\section*{7-5-7. Measurement Logic Section Checks}

The measurement logic section circuitry in mainly used as a digital control to the analog signals within the Model 6010. The function control circuit checks is given in Table 7-8. Table 7-9 describes the remaining of the measurement logic circuit. Due to high speed signals, it was necessary to implement ECL technology. It is recommended that checks that are performed in Table 7-9, using an oscilloscope, be made with a special high frequency probe that has a very short grounding clip.

Table 7-3. Digital Circuitry and Display Checks
\begin{tabular}{|c|c|c|c|}
\hline & Component & Required Condition & Remarks \\
\hline 1 & & Turn on power & Some tests here could fail due to digital problems \\
\hline & Microprocessor Clock & 0 to +4 V 10 MHz square wave & Pin 18 on U39 \\
\hline & Microprocessor Timer & 0 to +4 V 4.88 KHz square wave & Pin 14 on U39 \\
\hline 4 & KeyBoard/Display Control Clock & 0 to +4 V 1.25 MHz square wave & Pin 3 on U36 \\
\hline & IEEE Interface Clock & 0 to +4 V 5 MHz square wave & Pin 3 on U47 \\
\hline 6 & Beeper clock & 0 to +4 V 1.5 KHz square wave & pin 1 on U41 \\
\hline 7 & Reset Input & Turn off instrument then back on & Pin 9 on U39 stays low for about . 1 Sec and then goes high \\
\hline 8 & ALE Line & 0 to +4 V 160 nSec pulses & Pin 30 on U39 \\
\hline 9 & PSEN Line & 0 to +4 V 265 nSec negative going pulses & Pin 29 on U39 \\
\hline 10 & RD WR Lines & 0 to +4 V 500 nSec negative going pulses & Pins 16 and 17 on U39 \\
\hline 11 & Address/Data Bus & \begin{tabular}{l}
0 to +4 V variable pulse train \\
Depress and hold the UP Level A during the next two tests
\end{tabular} & Pins 21 thru 28 and Pins 32 thru 39 on U39 Pins 3 thru 10 on U42 This will generate serial data on the RXD lines \\
\hline 12 & TTL Serial Data Input & 0 to +5 V variable pulse train & \begin{tabular}{l}
Pin 2 of \(U 1\) \\
Pin 2 of U3 \\
Pin 2 of U6 \\
Pin 2 of U7
\end{tabular} \\
\hline 13 & ECL Serial Data Input & -5.2 to \(0 V\) variable pulse train & \begin{tabular}{l}
Pin 2 of \(U 15\) \\
Pin 2 of U14 \\
Pin 2 of U13
\end{tabular} \\
\hline 14 & TTL Serial to Parallel converters clocks & 0 to +5 V bursts of pulse train & \begin{tabular}{l}
Pin 4 of U37 \\
Pin 3 of U1 \\
Pin 3 of U3 \\
Pin 3 of U6 \\
Pin 3 of \(U 7\)
\end{tabular} \\
\hline 15 & ECL Serial to Parallel converters clocks & -5.2 to \(0 V\) bursts of pulse train & \begin{tabular}{l}
Pin 3 of U15 \\
Pin 3 of U14 \\
Pin 3 of U13
\end{tabular} \\
\hline 16 & TTL Serial to Parallel converters strobes & 0 to +5 V bursts of pulse train & \begin{tabular}{l}
Pin 15 of U37 \\
Pin 1 of \(U 1\) \\
Pin 1 of U3 \\
Pin 1 of U6 \\
Pin 1 of \(U 7\)
\end{tabular} \\
\hline 17 & ECL Serial to Parallel converters strobes & -5.2 to \(0 V\) bursts of pulse train & \begin{tabular}{l}
Pin 1 of \(U 15\) \\
Pin 1 of U14 \\
Pin 1 of U13
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{lll}
Table 7-3. Digital Circuitry and Display Checks & (continued) \\
\hline Component & Required Condition & Remarks
\end{tabular}

Table 7-4. TCXO and x10 Multiplier Circuit Checks

Table 7-5. Trigger Level Circuit Checks
\begin{tabular}{|c|c|c|}
\hline Component & Required Condition & Remarks \\
\hline 1 & \multicolumn{2}{|l|}{Turn on power} \\
\hline 2 D to A Reference & \(+6.2 \mathrm{~V}+/-300 \mathrm{mv}\) & Pin 15 of \(\mathbf{U 4}\) and \(\operatorname{Pin} 15\) of 48 \\
\hline & \multicolumn{2}{|l|}{Change front panel trigger level setting for Channels A and B to +0.00V} \\
\hline 3 Channel A zero Trigger Level & +0.00v +/- 35mV & Pin 7 of U9b \\
\hline 4 Channel B zero Trigger Level & +0.00v +/- 35mV & Pin 7 of U5b \\
\hline
\end{tabular}

Table 7-5. Trigger Level Circuit Checks (continued)
\begin{tabular}{|c|c|c|c|}
\hline & Component & Required Condition & Remarks \\
\hline & & Change front pane ger level setti Channels A and B & \\
\hline 5 & Channel A Positive Trigger Level & \[
+5.00 \mathrm{v}+/-100 \mathrm{mv}
\] & Pin 7 of U9b \\
\hline 6 & Channel B Positive Trigger Level & \[
+5.00 \mathrm{v}+/-100 \mathrm{mv}
\] & Pin 7 of U5b \\
\hline
\end{tabular}

Table 7-6. Signal Conditioning Checks
\begin{tabular}{|c|c|c|c|c|}
\hline & Component & Required Condition & Remarks & \\
\hline \multirow[t]{2}{*}{1} & & Turn power on & \multicolumn{2}{|l|}{The following tests are performed on U2} \\
\hline & Input conditioning signals: & & Channel A & Channel B \\
\hline 2 & DC & +5 V dc & Pin 14 & Pin 11 \\
\hline 3 & AC & +0.5 V dc & Pin 14 & Pin 11 \\
\hline 4 & Filter On & +0.5 V dc & Pin 15 & Pin 13 \\
\hline 5 & Filter off & +5 V dc & Pin 15 & Pin 13 \\
\hline 6 & Separate & +0.5 V dc & & Pin 10 \\
\hline & & +5 V dc & Pin 12 & \\
\hline 7 & Common A & +5 V dc & & Pin 10 \\
\hline & & & Pin 12 & \\
\hline 8 & Negative Slope & +0 V dc & U13 Pin 11 & U13 Pin 14 \\
\hline 7 & Positive Slope & -5.2 V dc & U13 Pin 11 & U13 Pin 14 \\
\hline 9 & \(\times 1\) & +5 V dc & K3 Pin 6 & K7 Pin 6 \\
\hline 10 & x10 & +0.5 V dc & K3 Pin 6 & K7 Pin 6 \\
\hline
\end{tabular}

Table 7-7. Input Circuits Checks
\begin{tabular}{|c|c|c|c|}
\hline & Component & Required Condition & Remarks \\
\hline 1 & & \begin{tabular}{l}
Turn on power \\
Press [2nd], [DCL]
\end{tabular} & Apply \(1 \mathrm{MHz} .2 \mathrm{Vp}-\mathrm{p}\) sine to Channel A input BNC \\
\hline 2 & Channel A Input Amplifier & 1MHz . 150Vp-p sine & CR6 Cathode \\
\hline 3 & Schmidt Trigger A Operation & -1.7 V to -0.8 V 1 MHz square wave & Pin 1 on U12a \\
\hline & & Select FREQ B function & Apply 1MHz .2Vp-p sine to Channel B input BNC \\
\hline 4 & Channel B Input Amplifier & 1MHz . 150Vp-p sine & CR14 Cathode \\
\hline 5 & Schmidt Trigger B Operation & \[
-1.7 \mathrm{~V} \text { to }-0.8 \mathrm{~V} 1 \mathrm{MHz}
\] square wave & Pin 16 on U12b \\
\hline
\end{tabular}
 ONY \(\forall\) xV3d \(\wedge\) SI INBW3 \(\overline{\text { SBIDON }}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline － & & \[
\stackrel{\pi}{\infty}
\] & \[
\begin{aligned}
& \boldsymbol{\infty} \\
& \gg \\
& \vdots
\end{aligned}
\] & \[
\begin{aligned}
& -1 \\
& -1 \\
& \mathbf{\infty} \\
& \mathbf{\infty} \\
& \mathbf{\infty}
\end{aligned}
\] & \[
\bar{\Sigma}_{\boldsymbol{i}}
\] & \[
\underset{\vdots}{\infty}
\] & -1
8
\(\vdots\)
4
\[
\begin{aligned}
& \\
& n \\
& 2 \\
& 2 \\
& 1 \\
& m
\end{aligned}
\] & |l & & \[
\stackrel{\rightharpoonup}{\delta}
\] & \begin{tabular}{l}
끼제 \\
\begin{tabular}{l}
\(\frac{n}{2}\) \\
\(\infty\) \\
\hline
\end{tabular}
\end{tabular} & & & \[
\underset{2}{\mathbf{o}}
\] & \[
\text { FREQ } \mathrm{B}^{\text {(2) REC }}
\] & \[
\begin{aligned}
& i \\
& 2 \\
& 2
\end{aligned}
\] & & \\
\hline 0 & \(\bigcirc\) & 0 & － & － & \(\bigcirc\) & 0 & － & 0 & 2 & 0 & － & \(Q\) & 0 & 0 & \(\bigcirc\) & 0 & 0 & \(\frac{\square}{2} \frac{5}{N}\) \\
\hline \(\bigcirc\) & \(\bigcirc\) & 0 & － & － & － & 0 & － & 0 & 2 & 0 & － & \(Q\) & 0 & 0 & 0 & \(\bigcirc\) & \(\bigcirc\) & 素 c \\
\hline － & － & － & \(\bigcirc\) & \(\bigcirc\) & － & － & 0 & － & － & － & 0 & － & － & － & － & － & － & 끛 \\
\hline \(\bigcirc\) & － & － & 0 & \(\bigcirc\) & － & 0 & － & \(\bigcirc\) & － & － & － & － & － & － & － & － & － & \\
\hline 0 & － & － & － & － & － & 0 & 0 & 0 & － & － & 0 & － & － & － & － & － & － & \(\overline{\geq}_{\text {O }}^{\sim}\) \\
\hline － & 0 & 0 & － & － & － & － & － & － & Q & 0 & － & \(Q\) & 0 & 0 & 0 & \(\bigcirc\) & O． & 交 \\
\hline － & 0 & － & － & － & － & － & － & － & \(Q\) & 0 & － & \(Q\) & － & － & － & － & \(\bigcirc\) & 文 \\
\hline － & － & － & － & － & － & － & － & － & － & － & － & － & － & \(\bigcirc\) & － & 0 & － & 或 \\
\hline － & － & － & － & － & － & － & － & － & － & － & － & － & 0 & － & － & － & － & \[
\frac{0}{2} \underset{0}{C}
\] \\
\hline 0 & － & － & － & － & － & \(\bigcirc\) & － & \(\bigcirc\) & － & － & － & － & － & － & － & － & － & 交 \\
\hline － & － & － & \(\bigcirc\) & \(\bigcirc\) & － & － & － & － & － & － & － & － & － & － & － & － & － & \(\sum_{\substack{0}}^{\sim}\) \\
\hline － & － & 0 & 0 & 0 & 0 & － & － & － & － & － & － & － & － & － & 0 & － & － & 끌 \\
\hline \(\bigcirc\) & － & － & － & － & － & 0 & 0 & \(\bigcirc\) & － & － & － & － & － & － & － & － & － & \(\underset{\sim}{\text { ® }}\) \\
\hline － & － & \(\bigcirc\) & － & － & － & － & － & － & － & － & － & － & － & － & － & \(\bigcirc\) & － & 끛 \\
\hline － & － & － & － & － & － & － & － & － & － & － & － & － & － & 0 & － & － & － & \\
\hline 0 & \(\bigcirc\) & － & － & － & － & 0 & \(\bigcirc\) & 0 & \(Q\) & 0 & 0 & \(Q\) & 0 & － & \(\bigcirc\) & － & 0 & 菏 \\
\hline － & － & － & \(\bigcirc\) & － & － & － & － & － & － & － & \(\bigcirc\) & － & － & － & － & － & － & \[
\frac{0}{2} \underset{N}{N}
\] \\
\hline － & － & － & － & \(\bigcirc\) & － & － & － & － & － & － & － & － & － & － & － & － & － & 릉 \\
\hline
\end{tabular}

Table 7-9. Measurement Logic Section Circuits Checks

Table 7-9. Measurement Logic Section Circuits Checks (continued)
\begin{tabular}{|c|c|}
\hline Component & Required Condition Remarks \\
\hline & Change panel setting to PER A. Apply 1 KHz 1 V p-p square wave to Channel A input BNC. \\
\hline 16 Start/Stop Signal & -1.7 V to \(-0.7 \mathrm{~V} 1 \mathrm{KHz} \quad \mathrm{U} 17\) Pin 9 square wave \\
\hline 17 Time Interval & -1.7 V to -0.7 V 1 mSec
\[
\text { U18 Pin } 15
\] negative going pulse for each cycle \\
\hline 18 Gate Identifier & TTL low level for 1 mSec , U31 Pin 13 TTL high for about 300 mSec after gate closure \\
\hline
\end{tabular}

\section*{This Page Was Intentionally Left Blank}

\section*{SECTION 8}

\section*{PARTS LIST}

\subsection*{8.1 GENERAL}

This section contains information for ordering replacement parts. the replacement parts are available from the vendors listed or from Tabor Electronics. Mechanical parts are shown separately on Figure 81.

\subsection*{8.2 ORDERING INFORMATION}

When ordering replacement parts, always include the following information:
a) Instrument Model number.
b) Instrument Serial number.
c) Tabor part number.
d) Part description.
e) Circuit designation (where applicable).

\subsection*{8.3 MAINTENANCE KIT}

A maintenance Kit is available. This Kit contains a complement of spare parts which will maintain up to ten Model 6010 Function Generators. A list of the Kit parts is available upon request.

Tabor will do its best to improve the instrument and make changes in style of components and replacement parts. Replacement parts may differ in appearance from those found in your instrument but are always equal or superior in performance.

\subsection*{8.4 PARTS DESCRIPTION}

In the following Parts List Tables, unless otherwise noted, resistors power rating is \(1 / 4 \mathrm{~W}\), resistance is given in ohms, and capacitance is given in \(\mu \mathrm{F}\).

Some parts in the following parts lists are marked with an asterisk (*). These parts belong to the standard time base circuit. These parts will not be assembled when option 1 (TCXO) is installed.

Matched or selected components may only be bought from the factory. Selection guides for such components are not given anywhere in this manual.

Table 8-1. Model 6010 PARTS LIST - MAIN BOARD ASSEMBLY
DWG
REF PART NUMBER DESCRIPTION
U1 0540-01100 8 BIT SHIFT REGISTER CD 4094B
U2 0500-11600 BUFFER 9668 (L204)
U3 0540-01100 8 BIT SHIFT REGISTER CD 4094B
U4 0560-00700 D-A 10 BIT CONVERTOR AD7533JN
U5 0500-56500 DUAL OP AMP LM1458N
U6 0540-01100 8 BIT SHIFT REGISTER CD 4094B
U7 0540-01100 8 BIT SHIFT REGISTER CD 4094B
U8 0560-00700 D-A 10 BIT CONVERTOR AD7533JN
U9 0500-56500 DUAL OP AMP LM1458N
U10 0500-53400 SUPER GAIN OP AMP LM308A
U11 0500-53400 SUPER GAIN OP AMP LM308A
U12 0500-60500 AD 9687 BD
U13 0540-01100 8 BIT SHIFT REGISTER CD 4094B
U14 0540-01100 8 BIT SHIFT REGISTER CD 4094B
U15 0540-01100 8 BIT SHIFT REGISTER CD 4094B
U16 0540-00630 HEX INVERTER CD 4049B
U17 0500-45300 ECL FLIP-FLOP MC 10H131 P
U18 0500-40910 ECL OR/NOR GATE MC10105P
U19 0500-40910 ECL OR/NOR GATE MC10105P
U20 0500-40900 ECL NOR 10102
U21 0500-40900 ECL NOR 10102
U22 0500-45300 ECL FLIP-FLOP MC 10H131 P
U23 0500-12600 D-FLIP-FLOP 74F74
U24 0500-40950 ECL XOR/XNOR MC 10107P
U25 0500-40900 ECL NOR 10102
U26 0500-40900 ECL NOR 10102
U27 0500-12600 D-FLIP-FLOP 74F74
U28 0500-40900 ECL NOR 10102
U29 0500-41200 ECL FLIP-FLOP MC10131P
U30 0500-41200 ECL FLIP-FLOP MC10131P
U31 0500-40920 ECL TO TTL TRANSLATOR MC10125P
U35 0500-11600 BUFFER 9668 (L204)
U36 0500-20700 KEYBOARD/DISPLAY CONTROL P8279
U37 0540-00630 HEX INVERTER CD4049B
U38 0510-02700 LOW POWER SCHOTTKY 74LS138
U39 0500-21410 SINGLE CHIP CPU P8031
U40 0510-03650 LOW POWER SCHOTTKY 74LS373
U41 0520-07000 H-CMOS-DIVIDER SN74HC4040
U42 0500-21230 EPROM 27128
U43 0500-11160 MK48ZO2B-20 MOSTEK RAM
U44 0550-00100 32BIT BINARY COUNTER LS7061
U45 0550-00100 32BIT BINARY COUNTER LS7061
U46 0510-03930 LOW POWER SCHOTTKY 74LS393N
U47 0500-21300 G.P.I.B P8291A
U48 0500-21510 BUFFER FOR G.P.IB DS 75160 N
U49 0500-21520 BUFFER FOR G.P.IB DS 75161 N
U50 0500-52200 VOLTAGE REGULATOR MC7812CP
U51 0500-52300 VOLTAGE REGULATOR MC7912CP
U52 0500-56500 DUAL OP AMP LM1458N
\begin{tabular}{|c|c|c|c|}
\hline DWG & & & \\
\hline REF & PART NUMBER & DESCRIPTION & \\
\hline U55 & 0500-52000 & (*) VOLTAGE REGULATOR MC7805CP & \\
\hline U56 & 0500-12650 & (*) FAST SCHOTTKY 74LS132 & \\
\hline U57 & 0800-50000 & (*) OSCILLATOR 10MHz 5PPM TAD & \\
\hline K1 & 0900-01100 & RELAY DUAL INLINE 1A 5V-6007 & \\
\hline K2 & 0900-01000 & RELAY DUAL INLINE 1C HE721C05-10 & \\
\hline K3 & 0900-01000 & RELAY DUAL INLINE 1C HE721C05-10 & \\
\hline K4 & 0900-01100 & RELAY DUAL INLINE 1A 5V-6007 & \\
\hline K5 & 0900-01100 & RELAY DUAL INLINE 1A 5V-6007 & \\
\hline K6 & 0900-01000 & RELAY DUAL INLINE 1C HE721C05-10 & \\
\hline K7 & 0900-01000 & RELAY DUAL INLINE 1C HE721C05-10 & \\
\hline K8 & 0900-01100 & RELAY DUAL INLINE 1A 5V-6007 & \\
\hline Q1 & 0400-00300 & TSTR NPN 2N4124 & \\
\hline Q2 & 0400-40700 & TSTR JFET 2N4416A (SELECTED) & \\
\hline Q3 & 0400-00700 & TSTR NPN 2N5179 & \\
\hline Q4 & 0400-00700 & TSTR NPN 2N5179 & \\
\hline Q5 & 0400-00700 & TSTR NPN 2N5179 & \\
\hline Q6 & 0400-00300 & TSTR NPN 2N4124 & \\
\hline Q7 & 0400-40700 & TSTR 2N4416A (SELECTED) & \\
\hline Q8 & 0400-00700 & TSTR NPN 2N5179 & \\
\hline Q9 & 0400-00700 & TSTR NPN 2N5179 & \\
\hline Q10 & 0400-00700 & TSTR NPN 2N5179 & \\
\hline Q11 & 0400-00400 & TSTR PNP 2N4126 & \\
\hline Q12 & 0400-00400 & TSTR PNP 2N4126 & \\
\hline Q13 & 0400-00400 & TSTR PNP 2N4126 & \\
\hline Q14 & 0400-00300 & TSTR NPN 2N4124 & \\
\hline Q15 & 0400-00300 & TSTR NPN 2N4124 & \\
\hline Q20 & 0400-01810 & TSTR 2N4401 & \\
\hline Q21 & 0400-00300 & TSTR NPN 2N4124 & \\
\hline Q23 & 0400-00300 & TSTR NPN 2N4124 & \\
\hline Q24 & 0400-00300 & TSTR NPN 2N4124 & \\
\hline Q30 & 0400-40100 & TSTR 2N2219A & \\
\hline Q31 & 0400-40300 & TSTR MJE 2955A & \\
\hline Q32 & 0400-01500 & TSTR PNP 2N2905A & \\
\hline Q33 & 0400-40400 & TSTR MJE 3055 & \\
\hline C1 & 1521-04730 & CAP POL.047UF 20\% 250V MKT1818 & \\
\hline C2 & 1500-01040 & CAP CER . 1 UF-20\%+80\% 50V & \\
\hline C3 & 1550-01800 & CAP VAR 5-18PF DV11PS18A & \\
\hline C5 & 1500-01040 & CAP CER . 1 UF-20\%+80\% 50V & \\
\hline C6 & 1510-03R00 & CAP MICA 3 PF 10\% 500V & \\
\hline C7 & 1500-01040 & CAP CER . 1 UF-20\%+80\% 50V & \\
\hline C8 & 1510-06200 & CAP MICA 62PF 10\% 500V & \\
\hline C9 & 1500-01040 & CAP CER . 1 UF-20\%+80\% 50V & \\
\hline C10 & 1500-01040 & CAP CER . 1 UF-20\%+80\% 50V & \\
\hline C11 & 1500-01040 & CAP CER . 1 UF-20\%+80\% 50V & \\
\hline C14 & 1500-01030 & CAP CER 10 NF 20\% 50V & \\
\hline
\end{tabular}

Table 8-1. Model 6010 PARTS LIST - MAIN BOARD ASSEMBLY (continued)
DWG
REF PART NUMBER DESCRIPTION
C15 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C16 1510-06200 CAP MICA 62PF 10\% 500V
C17 1500-01040 CAP CER . 1 UF- \(20 \%+80 \%\) 50V
C18 1500-01010 CAP CER 100 PF 20\% 50V
C20 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C21 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C22 1500-01030 CAP CER 10 NF 20\% 50V
C23 1540-01060 CAP TANT 10 UF 25V
C24 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C25 1500-01010 CAP CER 100 PF 20\% 50V
C26 1521-04730 CAP POL.047UF 20\% 250V MKT1818
C27 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C28 1550-01800 CAP VAR 5-18PF DV11PS18A
C30 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C31 1510-03R00 CAP MICA 3 PF 10\% 500V
C32 1500-01040 CAP CER . 1 UF- \(20 \%+80 \%\) 50V
C33 1510-06200 CAP MICA 62PF 10\% 500V
C34 1500-01040 CAP CER . 1 UF-20\% \(+80 \%\) 50V
C35 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C36 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C39 1500-01030 CAP CER 10 NF 20\% 50V
C40 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C41 1510-06200 CAP MICA 62PF 10\% 500V
C42 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C43 1500-01010 CAP CER 100 PF 20\% 50V
C45 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C46 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C47 1540-01060 CAP TANT 10 UF 25V
C48 1500-01030 CAP CER 10 NF 20\% 50V
C49 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C50 1500-01010 CAP CER 100 PF 20\% 50V
C51 1500-01040 CAP CER . 1 UF-20\% \(+80 \% 50 \mathrm{~V}\)
C52 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C53 1500-01040 CAP CER . 1 UF-20\% \(+80 \% 50 \mathrm{~V}\)
C54 1500-01040 CAP CER . \(1 \mathrm{UF}-20 \%+80 \%\) 50V
C55 1500-01040 CAP CER . 1 UF- \(20 \%+80 \%\) 50V
C56 1540-01060 CAP TANT 10 UF 25V
C57 1540-01060 CAP TANT 10 UF 25V
C58 1500-01040 CAP CER . 1 UF- \(20 \%+80 \%\) 50V
C59 1540-01060 CAP TANT 10 UF 25V
C60 1540-01060 CAP TANT 10 UF 25V
C65 1500-01040 CAP CER . 1 UF-20\% \(+80 \% 50 \mathrm{~V}\)
C66 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C67 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C68 1500-01040 CAP CER . 1 UF- \(20 \%+80 \%\) 50V
C69 1500-01040 (*) CAP CER . 1 UF-20\%+80\% 50V
C70 1500-01040 CAP CER . 1 UF- \(20 \%+80 \% 50 \mathrm{~V}\)

Table 8-1. Model 6010 PARTS LIST - MAIN BOARD ASSEMBLY (continued)
DWG
REF PART NUMBER DESCRIPTION
\begin{tabular}{lllllll}
\hline C71 & \(1500-04 R 70\) & CAP CER 4.7 & PF & \(20 \%\) & 50 V \\
C72 & \(1500-01010\) & CAP CER & 100 & PF & \(20 \%\) & 50 V
\end{tabular}
C73 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C74 1500-01040 CAP CER . \(1 \mathrm{UF}-20 \%+80 \% 50 \mathrm{~V}\)
C75 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C76 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C77 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C78 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C79 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C80 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C81 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C82 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C83 1500-01040 CAP CER . \(1 \mathrm{UF}-20 \%+80 \%\) 50V
C84 1500-01040 CAP CER . \(1 \mathrm{UF}-20 \%+80 \%\) 50V
C85 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C86 1500-01030 CAP CER 10 NF 20\% 50V
\begin{tabular}{lll}
C87 & 1532-01070 & CAP ELEC 100UF 16V \\
C89 & \(1533-01080\) & CAP ELECTR 1000 MF/25V
\end{tabular}
C90 1500-01040 CAP CER . \(1 \mathrm{UF}-20 \%+80 \%\) 50V
C91 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C92 1540-03350 CAP TANT 3.3UF/25V
C93 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C94 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C95 1500-01040 CAP CER . \(1 \mathrm{UF}-20 \%+80 \% 50 \mathrm{~V}\)
C96 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C97 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C98 1500-01040 CAP CER . \(1 \mathrm{UF}-20 \%+80 \%\) 50V
C99 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C100 1500-01040 CAP CER . \(1 \mathrm{UF}-20 \%+80 \%\) 50V
C101 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C102 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C105 1533-01080 CAP ELECTR \(1000 \mathrm{MF} / 25 \mathrm{~V}\)
C106 1533-01080 CAP ELECTR \(1000 \mathrm{MF} / 25 \mathrm{~V}\)
C107 1533-01070 CAP ELECTR 100UF/25V
C108 1533-01070 CAP ELECTR 100UF/25V
C109 1532-01090 CAP ELEC 10.000UF 16V
C110 1532-01090 CAP ELEC 10.000UF 16V
C111 1532-04770 CAP ELECTR \(470 \mathrm{MF} / 16 \mathrm{~V}\)
C112 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C113 1500-02210 CAP CER 220 PF 20\% 50V
C114 1500-02210 CAP CER 220 PF 20\% 50V
C116 1532-04770 CAP ELECTR \(470 \mathrm{MF} / 16 \mathrm{~V}\)
C120 1500-01030 (*) CAP CER 10 NF 20\% 50V
C121 1540-01060 (*) CAP TANT 10 UF 25V
C122 1540-01060 (*) CAP TANT 10 UF 25V
C123 1500-01040 (*) CAP CER . \(1 \mathrm{UF}-20 \%+80 \% 50 \mathrm{~V}\)
C124 1550-01800 (*) CAP VAR 5-18PF DV11PS18A
C126 1550-01000 (*) CAP VAR 2-10PF JACKS 5750
C127 1500-01040 CAP CER . 1 UF-20\%+80\% 50V
C128 1500-01040 CAP CER . 1 UF-20\%+80\% 50V

Table 8-1. Model 6010 PARTS LIST - MAIN BOARD ASSEMBLY (continued)
DWG
REF PART NUMBER DESCRIPTION
R3 0104-9003A RES MF 900K 1\% 1/2
R4 0104-9003A RES MF 900K 1\% 1/2W
R5 0104-10030 RES MF 100K 1\% 1/4W
R6 0100-01540 RES COMP 150K 5\% 1/4W
R7 0100-03300 RES COMP 33 5\% 1/4W
R8 0100-01510 RES COMP 150 5\% 1/4W
R9 0100-01060 RES COMP 10M 5\% 1/4W
R10 0100-04710 RES COMP 470 5\% 1/4W

R11 0100-01030 RES COMP 10K 5\% 1/4W
R12 0100-03300 RES COMP 33 5\% 1/4W
R13 0100-03910 RES COMP 390 5\% 1/4W
R14 0100-01510 RES COMP 150 5\% 1/4W
R15 0100-07520 RES COMP 7.5K 5\% 1/4W
R16 0100-01520 RES COMP 1.5K 5\% 1/4W
R17 0104-66530 RES MF 665K 1\% 1/4W
R18 0100-01810 RES COMP 180 5\% 1/4W
R19 0100-02720 RES COMP 2.7K 5\% 1/4W
R20 0100-03920 RES COMP 3.9K 5\% 1/4W
R21 0104-86610 RES MF 8.66K 1\% 1/4W
R22 0104-10030 RES MF 100K 1\% 1/4W
R23 0104-28010 RES MF 2.8K 1\% 1/4W
R24 0104-28010 RES MF 2.8K 1\% 1/4W
R25 0104-10000 RES MF 100 1\% 1/4W
R26 0105-10020 RES MF 10K .1\% 1/4W
R27 0104-15020 RES MF 15K 1\% 1/4W
R28 0104-10010 RES MF 1K 1\% 1/4W
R29 0105-20020 RES MF 20K . 1\% 1/4W
R30 0104-10010 RES MF 1K 1\% 1/4W
R33 0104-4R020 RES MF 4.02 1\% 1/4W
R34 0104-30100 RES MF 301 1\% 1/4W
R35 0104-11310 RES MF 1.13K 1\% 1/4W
R36 0100-02210 RES COMP 220 5\% 1/4W
R37 0100-03310 RES COMP 330 5\% 1/4W
R38 0100-02220 RES COMP 2.2K 5\% 1/4W
R39 0104-11030 RES MTF 110K 1/4W 1\%
R42 0104-9003A RES MF 900K 1\% 1/2W
R43 0104-9003A RES MF 900K 1\% 1/2W
R44 0104-10030 RES MF 100K 1\% 1/4W
R45 0100-01540 RES COMP 150K 5\% 1/4W
R46 0100-03300 RES COMP 33 5\% 1/4W
R47 0100-01510 RES COMP 150 5\% 1/4W
R48 0100-01060 RES COMP 10M 5\% 1/4W
R49 0100-04710 RES COMP 470 5\% \(1 / 4 \mathrm{~W}\)
R50 0100-01030 RES COMP 10K 5\% 1/4W
R51 0100-03300 RES COMP 33 5\% 1/4W

Table 8-1. Model 6010 PARTS LIST - MAIN BOARD ASSEMBLY (continued)
DWG
REF PART NUMBER DESCRIPTION
\begin{tabular}{llllll}
R52 & \(0100-03910\) & RES COMP & 390 & \(5 \%\) & \(1 / 4 \mathrm{~W}\) \\
R53 & \(0100-01510\) & RES COMP & 150 & \(5 \%\) & \(1 / 4 \mathrm{~W}\)
\end{tabular}
R54 0100-07520 RES COMP 7.5K 5\% 1/4W
R55 0100-01520 RES COMP 1.5K 5\% 1/4W

R56 0104-66530 RES MF 665K 1\% 1/4W
R57 0100-01810 RES COMP 180 5\% 1/4W
R58 0100-02720 RES COMP 2.7K 5\% 1/4W
R59 0100-03920 RES COMP 3.9K 5\% 1/4W
R60 0104-86610 RES MF 8.66K 1\% 1/4W
R61 0104-10030 RES MF 100K 1\% 1/4W
R62 0104-28010 RES MF 2.8K 1\% 1/4W
R63 0104-28010 RES MF 2.8K 1\% 1/4W
R64 0104-10000 RES MF 100 1\% 1/4W
R65 0105-10020 RES MF 10K .1\% 1/4W
R66 0104-15020 RES MF 15K 1\% 1/4W
R67 0105-20020 RES MF 20K .1\% 1/4W
R68 0104-10010 RES MF 1K 1\% 1/4W
R69 0104-10010 RES MF 1K 1\% 1/4W
R72 0104-4R020 RES MF 4.02 1\% 1/4W
R73 0104-30100 RES MF 301 1\% 1/4W
R74 0104-11310 RES MF 1.13K 1\% 1/4W
R75 0100-02210 RES COMP 220 5\% 1/4W
R76 0100-03310 RES COMP 330 5\% 1/4W
R77 0100-02220 RES COMP 2.2K 5\% 1/4W
R78 0104-11030 RES MTF 110K 1/4W 1\%
R79 0100-06210 RES 620 1/4W 5\%
R80 0203-02020 RES VAR 2K 3386F-1-502
R81 0203-02020 RES VAR 2K 3386F-1-502
R83 0203-02020 RES VAR 2K 3386F-1-20
R84 0203-02020 RES VAR 2K 3386F-1
R90 0100-05110 RES COMP 510 5\% 1/4W
R91 0100-01020 RES COMP 1K 5\% 1/4W
R92 0100-05110 RES COMP 510 5\% 1/4W
R93 0100-05110 RES COMP 510 5\% 1/4W
R94 0100-02410 RES COMP 240 5\% 1/4W
R95 0100-05110 RES COMP 510 5\% 1/4W
R96 0100-03310 RES COMP 330 5\% 1/4W
R97 0100-02720 RES COMP 2.7K 5\% 1/4W
R98 0100-02220 RES COMP 2.2K 5\% 1/4W
R99 0100-03310 RES COMP 330 5\% 1/4W
R100 0100-05110 RES COMP 510 5\% 1/4W
R101 0100-05110 RES COMP 510 5\% 1/4W
R102 0100-03310 RES COMP 330 5\% 1/4W
R103 0104-24910 RES MF 2.49K 1\% 1/4W
R104 0104-75100 RES MF 750 1\% 1/4W
R105 0100-05110 RES COMP 510 5\% 1/4W
R106 0100-08210 (*) RES COMP 820 5\% 1/4W
R107 0100-01020 RES COMP 1K 5\% 1/4W
R108 0100-05110 RES COMP 510 5\% 1/4W

Table 8-1. Model 6010 PARTS LIST - MAIN BOARD ASSEMBLY (continued)
DWG
REF PART NUMBER DESCRIPTION
\begin{tabular}{llllll}
R109 & \(0100-05110\) & RES COMP 510 & \(5 \%\) & \(1 / 4 \mathrm{~W}\) \\
R110 & \(0100-05110\) & RES COMP & 510 & \(5 \%\) & \(1 / 4 \mathrm{~W}\) \\
R111 & \(0100-03310\) & RES COMP & 330 & \(5 \%\) & \(1 / 4 \mathrm{~W}\) \\
R112 & \(0100-02410\) & RES COMP & 240 & \(5 \%\) & \(1 / 4 \mathrm{~W}\) \\
R113 & \(0100-01010\) & RES COMP & \(1005 \%\) & \(1 / 4 \mathrm{~W}\) \\
R114 & \(0100-05110\) & RES COMP & \(5105 \%\) & \(1 / 4 \mathrm{~W}\) \\
R115 & \(0100-03310\) & RES COMP & \(3305 \% 1 / 4 \mathrm{~W}\) \\
R116 & \(0100-07520\) & RES COMP & \(7.5 \mathrm{~K} 5 \% 1 / 4 \mathrm{~W}\) \\
R117 & \(0100-05110\) & RES COMP & \(5105 \% 1 / 4 \mathrm{~W}\) \\
R118 & \(0100-07520\) & RES COMP & \(7.5 \mathrm{~K} 5 \% 1 / 4 \mathrm{~W}\) \\
R119 & \(0100-05110\) & RES COMP \(5105 \% 1 / 4 \mathrm{~W}\) \\
R120 & \(0100-01020\) & RES COMP & \(1 \mathrm{~K} 5 \% 1 / 4 \mathrm{~W}\) \\
R121 & \(0100-02720\) & RES COMP \(2.7 \mathrm{~K} 5 \% 1 / 4 \mathrm{~W}\)
\end{tabular}
R122 0100-05110 RES COMP 510 5\% 1/4W
R123 0100-02220 RES COMP 2.2K 5\% 1/4W

R124 0100-05110 RES COMP 510 5\% 1/4W
R125 0100-05110 RES COMP 510 5\% 1/4W

R126 0100-05110 RES COMP 510 5\% 1/4W
R127 0100-05110 RES COMP 510 5\% 1/4W
R128 0100-05110 RES COMP 510 5\% 1/4W
R129 0100-05110 RES COMP 510 5\% 1/4W
R130 0100-05110 RES COMP 510 5\% 1/4W
R131 0100-05110 RES COMP 510 5\% 1/4W
R132 0100-05110 RES COMP 510 5\% 1/4W
R133 0100-05110 RES COMP 510 5\% 1/4W
R134 0100-05110 RES COMP 510 5\% 1/4W
R135 0100-05110 RES COMP 510 5\% 1/4W
R136 0100-05110 RES COMP 510 5\% 1/4W
R137 0100-01030 RES COMP 10K 5\% 1/4W
R138 0100-01020 RES COMP 1K 5\% 1/4W
R139 0100-02720 RES COMP 2.7K 5\% 1/4W
R140 0100-08210 RES COMP 820 5\% 1/4W
R141 0100-08210 RES COMP 820 5\% 1/4W
R142 0100-01030 RES COMP 10K 5\% 1/4W
R143 0100-01510 RES COMP 150 5\% 1/4W
R144 0100-08210 RES COMP 820 5\% 1/4W
R145 0100-02020 RES COMP 2K 5\% 1/4W
R146 0100-03310 RES COMP 330 5\% 1/4W
R147 0100-01030 RES COMP 10K 5\% 1/4W
R148 0100-01030 RES COMP 10K 5\% 1/4W
R149 0100-01030 RES COMP 10K 5\% 1/4W
R150 0100-05110 RES COMP 510 5\% 1/4W
R151 0100-01020 RES COMP 1K 5\% 1/4W
R152 0100-01030 RES COMP 10K 5\% 1/4W
R153 0100-01030 RES COMP 10K 5\% 1/4W
R154 0100-01020 RES COMP 1K 5\% 1/4W
R155 0100-01020 RES COMP 1K 5\% 1/4W
R156 0100-01030 RES COMP 10K 5\% 1/4W
R157 0100-01020 RES COMP 1K 5\% 1/4W

Table 8-1. Model 6010 PARTS LIST - MAIN BOARD ASSEMBLY (continued)
DWG
REF PART NUMBER DESCRIPTION
\begin{tabular}{llll}
R158 & \(0100-03310\) & RES COMP \(3305 \% 1 / 4 \mathrm{~W}\) \\
R159 & \(0100-01020\) & RES COMP \(1 \mathrm{~K} 5 \% 1 / 4 \mathrm{~W}\)
\end{tabular}
R160 0100-03310 RES COMP 330 5\% 1/4W
R166 0100-03320 RES COMP 3.3K 5\% 1/4W
R167 0100-01030 RES COMP 10K 5\% 1/4W
R172 0100-01010 RES COMP 100 5\% 1/4W
R173 0100-01520 RES COMP 1.5K 5\% 1/4W
R174 0100-01030 RES COMP 10K 5\% 1/4W
R180 0100-01020 RES COMP \(1 \mathrm{~K} 5 \% 1 / 4 \mathrm{~W}\)
R181 0100-01210 RES COMP 120 5\% 1/4W
R182 0100-04720 RES COMP 4.7K 5\% 1/4W
R183 0104-57610 RES MF 5.76K 1\% 1/4W
R184 0100-01020 RES COMP \(1 \mathrm{~K} 5 \% 1 / 4 \mathrm{~W}\)
R185 0100-01210 RES COMP 120 5\% 1/4W
R186 0100-01020 RES COMP 1K 5\% 1/4W
R187 0104-66510 RES MF 6.65K 1\% 1/4W
R188 0104-60410 RES MF 6.04K 1\% 1/4W
R189 0104-10020 RES MF 10K 1\% 1/4W
R190 0203-01020 RES VAR 1K 3386F-1-102
R191 0100-02210 RES COMP 220 5\% 1/4W
R192 0100-05100 (*) RES COMP 51 5\% 1/4W
R193 0100-01820 (*) RES COMP 1.8K 5\% 1/4W
R194 0100-05610 (*) RES COMP 560 5\% 1/4W
R195 0100-01020 RES COMP 1K 5\% 1/4W
R196 0100-01020 RES COMP 1K 5\% 1/4W
CR1 0300-00400 DIODE SI 1N4151
CR2 0301-10000 DIODE PIC AMP PAD 50
CR3 0300-20400 DIODE ZENER 1N758A 10 V
CR4 0300-20010 DIODE ZENER 1N751A 5.1 V
CR5 0300-10300 DIODE HP2835- MATCHED WITH CR6
CR6 0300-10300 DIODE HP2835- MATCHED WITH CR5
CR7 0300-10300 DIODE HP2835- MATCHED WITH CR8
CR8 0300-10300 DIODE HP2835- MATCHED WITH CR7
CR9 0300-00400 DIODE SI 1N4151
CR10 0301-10000 DIODE PIC AMP PAD 50
CR11 0300-20400 DIODE ZENER 1N758A 10 V
CR12 0300-20010 DIODE ZENER 1N751A 5.1 V
CR13 0300-10300 DIODE HP2835- MATCHED WITH CR14
CR14 0300-10300 DIODE HP2835- MATCHED WITH CR13
CR15 0300-10300 DIODE HP2835- MATCHED WITH CR16
CR16 0300-10300 DIODE HP2835- MATCHED WITH CR15
CR17 0300-21100 DIODE REF 1N825A
CR23 0300-00400 DIODE SI 1N4151
CR25 0300-50100 DIODE BRIDGE WL005
CR26 0300-30000 DIODE RECT 1N4003
CR27 0300-30000 DIODE RECT 1N4003
CR28 0300-50200 DIODE BRIDGE KBL-005 5A GI
CR29 0300-90300 DIODE SA-5A

Table 8-1. Model 6010 PARTS LIST - MAIN BOARD ASSEMBLY (continued)

\section*{DWG}
REF PART NUMBER DESCRIPTION
\begin{tabular}{llll}
CR30 & \(0300-90300\) & & DIODE SA-5A \\
CR31 & \(0300-00400\) & & DIODE SI 1N4151 \\
CR32 & \(0300-00400\) & & DIODE SI 1N4151 \\
CR35 & \(0300-00400\) & & (*) DIODE SI 1N4151 \\
CR36 & \(0300-00400\) & (*) DIODE SI 1N4151
\end{tabular}
\begin{tabular}{lll}
DL1 & \(0600-10000\) & DELAY LINE 7nSEC 0402-0007-93 \\
RN1 & \(0109-01500\) & RES NET MDP-16-03-150G 15/16 \\
RN2 & \(0111-0103 B\) & RES NET 10K/10 MSP-10A-01-103G \\
SP1 & \(0900-01900\) & BEEPER AT-02 \\
Y1 & \(0800-30000\) & CRYSTAL 10MHZ C.T.S \\
SW1 & \(2000-10600\) & SW ON-OFF
\end{tabular}

Table 8-2. Model 6010 PARTS LIST - FRONT PANEL ASSEMBLY
DWG
REF PART NUMBER DESCRIPTION
U1 0510-02700 LOW POWER SCHOTTKY 74LS138
U2 0510-02700 LOW POWER SCHOTTKY 74LS138
Q1 0400-01800 TSTR PNP 2N4403
Q2 0400-01800 TSTR PNP 2N4403
Q3 0400-01800 TSTR PNP 2N4403
Q4 0400-01800 TSTR PNP 2N4403
Q5 0400-01800 TSTR PNP 2N4403
Q6 0400-01800 TSTR PNP 2N4403
Q7 0400-01800 TSTR PNP 2N4403
Q8 0400-01800 TSTR PNP 2N4403
Q9 0400-01800 TSTR PNP 2N4403
Q10 0400-01800 TSTR PNP 2N4403
Q11 0400-01800 TSTR PNP 2N4403
Q12 0400-01800 TSTR PNP 2N4403
Q13 0400-01800 TSTR PNP 2N4403
Q14 0400-01800 TSTR PNP 2N4403
CR1 0300-00400 DIODE SI 1N4151
CR2 0300-00400 DIODE SI 1N4151
CR3 0300-00400 DIODE SI 1N4151
R1 0100-02210 RES COMP 220 5\% 1/4W
R2 0100-02210 RES COMP 220 5\% 1/4W
R3 0100-02210 RES COMP 220 5\% 1/4W
R4 0100-02210 RES COMP 220 5\% 1/4W
R5 0100-02210 RES COMP 220 5\% 1/4W
R6 0100-02210 RES COMP 220 5\% 1/4W
R7 0100-02210 RES COMP 220 5\% 1/4W
R8 0100-02210 RES COMP 220 5\% 1/4W
R9 0100-02210 RES COMP 220 5\% 1/4W
R10 0100-02210 RES COMP 220 5\% 1/4W
R11 0100-02210 RES COMP 220 5\% 1/4W
R12 0100-02210 RES COMP 220 5\% 1/4W
R13 0100-02210 RES COMP 220 5\% 1/4W
R14 0100-02210 RES COMP 220 5\% 1/4W
```

Table 8-2. Model 6010 PARTS LIST - FRONT PANEL ASSEMBLY (continued)
DWG
REF PART NUMBER DESCRIPTION
DS1-9 1200-10800 7 SEGMENT DISPLAY HDSP 5501
DS10-
DS11 1200-10200 LED HDSP 7501 7 SEG 6010
DS12-
DS18 1000-00300 MINI 3MM LED RED 5082-4480
DS19-
DS41 1000-00700 LED RED MV 57124-18 G.I
S1-16 2000-61600 SW UNIMEC FOR 8200
J1-3 3000-10000 CON BNC MALE UG-1094-U
J4 3000-40150 CON 20 PIN MALE FOR SOLDER
J5 3000-40160 CON 20 PIN FEMALE

```
Table 8-3. Model 6010 PARTS LIST - ANALOG OUTPUT ASSEMBLY
DWG
REF PART NUMBER DESCRIPTION
\begin{tabular}{lll}
U58 & \(0510-00110\) & LOW POWER SCHOTTKY 74LSO2 \\
U59 & \(0560-00900\) & AD667JN DIGITAL TO ANALOG CONV \\
R168 & \(0203-01010\) & RES VAR 100 3386F-1-101 \\
R169 & \(0104-12100\) & RES MTF 121 1/4W 1\% \\
R170 & \(0104-10010\) & RES MF 1K 1\% 1/4W \\
C88 & \(1500-02200\) & CAP CER 22PF 20\% 50V \\
C103 & \(1540-01060\) & CAP TANT 10 UF 25V \\
C104 & \(1540-01060\) & CAP TANT 10 UF 25V \\
C115 & \(1500-01030\) & CAP CER 10 NF 20\% 50V \\
L1 & \(0600-01030\) & COIL 1 \(\mu H\) \\
L2 & \(0600-01030\) & COIL 1 \(\mu H\)
\end{tabular}
Table 8-4. Model 6010 PARTS LIST - TCXO ASSEMBLY
DWG
REF PART NUMBER DESCRIPTION
\(\begin{array}{lll}\text { U1 } & 0800-90000 & \text { TCXO } 10 \mathrm{MHz} \mathrm{1} \mathrm{PPM} \\ \text { U2 } & 0500-12650 & \text { FAST SCHOTTKY 74F132 }\end{array}\)
U3 0510-02300 LOW POWER SCHOTTKY 74LS90
U4 0500-64300 SP 8629
U5 0520-07100 74HCT4046 PLL
U6 0500-56700 SINGLE OP. AMP TL081CP
U7 0540-01500 ECL VCO MC 1648
CR1 0300-00400 DIODE SI 1N4151
CR2 0300-00400 DIODE SI 1N4151
CR3 0301-00100 DIODE VARICAP MV-104

Table 8-4. Model 6010 PARTS LIST - TCXO ASSEMBLY (continued)
DWG
REF PART NUMBER DESCRIPTION
L1 0600-03310 COIL 330 UH 2500-04 DEL.

L2 COIL 5 TURN TABOR MADE
Q1 0400-00750 TSTR PNP 2N5771
Q2 0400-00700 TSTR NPN 2N5179
R1 0100-05100 RES COMP 51 5\% \(1 / 4 \mathrm{~W}\)
R2 0100-05610 RES COMP 560 5\% 1/4W
R3 0100-01820 RES COMP 1.8K 5\% 1/4W
R4 0100-04720 RES COMP 4.7K 5\% 1/4W

R5 0100-01020 RES COMP 1K 5\% 1/4W
R6 0100-01510 RES COMP 150 5\% 1/4W
R7 0100-03330 RES COMP 33K 5\% 1/4W
R8 0100-02010 RES COMP 2K 5\% 1/4W
R9 0100-01030 RES COMP 10K 5\% 1/4W
R10 0104-10020 RES MF 10K 1\% 1/4W
R11 0104-10020 RES MF 10K 1\% 1/4W
R12 0100-02720 RES COMP 2.7K 5\% 1/4W
R13 0100-01520 RES COMP 15K 5\% 1/4W
R14 0100-01020 RES COMP \(1 \mathrm{~K} 5 \% 1 / 4 \mathrm{~W}\)
R15 0100-01020 RES COMP 1K 5\% 1/4W
R16 0100-01800 RES COMP 18 5\% 1/4W
\begin{tabular}{|c|c|c|c|c|c|}
\hline C1 & 1540-01060 & CAP & TANT & 10 UF 25V & \\
\hline C2 & 1500-01030 & CAP & CER & \(10 \mathrm{NF}-20 \%+80 \%\) & 50V \\
\hline C3 & 1500-01040 & CAP & CER & 1 UF-20\%+80\% & 50V \\
\hline C4 & 1540-01060 & CAP & TANT & 10 UF 25V & \\
\hline C5 & 1500-01040 & CAP & CER & . 1 UF-20\%+80\% & 50 V \\
\hline C6 & 1500-01030 & CAP & CER & \(10 \mathrm{NF} 20 \% 50 \mathrm{~V}\) & \\
\hline C7 & 1500-01030 & CAP & CER & \(10 \mathrm{NF} 20 \% 50 \mathrm{~V}\) & \\
\hline C8 & & CAP & MICA & SELECTED & \\
\hline C9 & 1510-08200 & CAP & MICA & 82PF 10\% 500V & \\
\hline C10 & 1500-01040 & CAP & CER & 1 UF-20\%+80\% & 50V \\
\hline C11 & 1500-01040 & CAP & CER & 1 UF-20\%+80\% & 50V \\
\hline C12 & 1500-01030 & CAP & CER & 10 NF 20\% 50V & \\
\hline C13 & 1500-01040 & CAP & CER & 1 UF-20\%+80\% & 50V \\
\hline C14 & 1500-01040 & CAP & CER & 1 UF-20\%+80\% & 50V \\
\hline C15 & 1500-01040 & CAP & CER & 1 UF-20\%+80\% & 50V \\
\hline C16 & 1500-01020 & CAP & CER & \(1 \mathrm{NF}-20 \%+20 \%\) & 50V \\
\hline C17 & 1500-01040 & CAP & CER & 1 UF-20\%+80\% & 50V \\
\hline C18 & 1500-01040 & CAP & CER & 1 UF-20\%+80\% & 50V \\
\hline C19 & 1500-01040 & CAP & CER & \(1 \mathrm{UF}-20 \%+80 \%\) & 50V \\
\hline C20 & 1500-01040 & CAP & CER & 1 UF-20\%+80\% & 50 V \\
\hline C21 & 1500-01040 & CAP & CER & 1 UF-20\%+80\% & 50V \\
\hline
\end{tabular}

Table 8-5. Model 6010 PARTS LIST - 1.3 GHz Input C.
DWG
\begin{tabular}{lllll}
REF & PART NUMBER & DESCRIPTION & \\
\hline R1 & \(0101-05100\) & RES COMP \(515 \% 1 / 2 \mathrm{~W}\) \\
R2 & \(0100-01020\) & RES COMP \(1 \mathrm{~K} 5 \% 1 / 4 \mathrm{~W}\) \\
R3 & \(0101-05100\) & RES COMP \(515 \% 1 / 2 \mathrm{~W}\) \\
R4 & \(0100-01020\) & RES COMP \(1 \mathrm{~K} 5 \% 1 / 4 \mathrm{~W}\) \\
R5 & \(0100-05610\) & RES COMP \(5605 \% 1 / 4 \mathrm{~W}\)
\end{tabular}

Table 8-5. Model 6010 PARTS LIST - 1.3 GHz Input C. (continued)
DWG
\begin{tabular}{llll}
REF & PART NUMBER & DESCRIPTION \\
\hline R6 & \(0100-05100\) & RES COMP 51
\end{tabular}

R7 0100-01020 RES COMP 1K 5\% 1/4W
R8 0102-03300 RES COMP 33 5\% 1/8W BB3305
R9 0100-02410 RES COMP 240 5\% 1/4W
R10 0100-01020 RES COMP 1K 5\% 1/4W
R11 0100-01020 RES COMP 1K 5\% 1/4W
R12 0100-01020 RES COMP 1K 5\% 1/4W
R13 0102-03300 RES COMP 33 5\% 1/8W BB3305
R14 0100-02220 RES COMP 2.2K 5\% 1/4W
R15 0101-02010 RES COMP 200 5\% 1/2W
R16 0100-05610 RES COMP 560 5\% 1/4W
R17 0102-02210 RES COMP 220 5\% 1/8W BB2215
R18 0102-02210 RES COMP 220 5\% 1/8W BB2215
R19 0100-01540 RES COMP 150K 5\% 1/4W
R20 0100-01020 RES COMP 1K 5\% 1/4W
R21 0100-02250 RES COMP 2.2M 5\% 1/4W
R22 0100-01020 RES COMP 1K 5\% 1/4W
R23 0100-01540 RES COMP 150K 5\% 1/4W
R24 RES COMP SELECTED VALUE
R25 0100-03320 RES COMP 3.3K 5\% 1/4W
R26 0100-05110 RES COMP 510 5\% 1/4W
C1 1560-01040 CAP CHIP . 1 UF 50V
C2 1560-01040 CAP CHIP . 1 UF 50V
C3 CAP CER SELECTED
C4 1560-01040 CAP CHIP . 1 UF 50V
C5 1560-01040 CAP CHIP . 1 UF 50V
C6 1560-01040 CAP CHIP . 1 UF 50V
C7 CAP CER SELECTED
C8 1560-01040 CAP CHIP . 1 UF 50V
C9 1560-01040 CAP CHIP . 1 UF 50V
C10 1560-01040 CAP CHIP . 1 UF 50V
C11 1560-01040 CAP CHIP . 1 UF 50V
C12 1560-01040 CAP CHIP . 1 UF 50V
C14 1560-01040 CAP CHIP . 1 UF 50V
C15 CAP CER SELECTED
C16 1560-01040 CAP CHIP . 1 UF 50V
C17 1560-01040 CAP CHIP . 1 UF 50V
C19 1560-01040 CAP CHIP . 1 UF 50V
C20 1560-01040 CAP CHIP . 1 UF 50V
C22 1560-01040 CAP CHIP . 1 UF 50V
C23 1500-03R30 CAP CER 3.3 PF 20\% 50V
C24 1560-01040 CAP CHIP . 1 UF 50V
C25 1500-02200 CAP CER 22 PF 20\% 50V
C26 1560-01040 CAP CHIP . 1 UF 50V

Table 8-5. Model 6010 PARTS LIST - 1.3 GHz Input C. (continued) DWG
REF PART NUMBER DESCRIPTION
Q1 0400-20100 TSTR BFR-90

Q2 0400-20300 TSTR NE21935A
Q3 0400-20100 TSTR BFR-90
Q4 0400-20300 TSTR NE21935A
Q5 0400-00300 TSTR NPN 2N4124
Q6 0400-00300 TSTR NPN 2N4124
U1 0500-64200 SP4750
U2 0500-53700 LM393N
CR1 0300-10300 DIODE HOT CARRIER 5082-2835
CR2 0300-10300 DIODE HOT CARRIER 5082-2835
CR3 0300-10300 DIODE HOT CARRIER 5082-2835
CR4 0300-10300 DIODE HOT CARRIER 5082-2835
CR5 0300-20200 DIODE ZENER 1N753A 6.2 V
CR6 0300-10300 DIODE HOT CARRIER 5082-2835
CR7 0300-10300 DIODE HOT CARRIER 5082-2835
CR8 0300-10300 DIODE HOT CARRIER 5082-2835
CR9 0300-10300 DIODE HOT CARRIER 5082-2835
CR10 0300-10300 DIODE HOT CARRIER 5082-2835
CR11 0300-10300 DIODE HOT CARRIER 5082-2835
CR12 0300-10200 DIODE HOT CARRIER 5082-2810
CR13 0300-10200 DIODE HOT CARRIER 5082-2810

\section*{SECTION 9}

\section*{SCHEMATIC DIAGRAMS}
DWG. DESCRIPTION9-1 Main Board - Input Amplifiers and Trigger Level Control 9-1
9-2 Main Board - Measurement Logic Circuit 9-2
9-3 Main Board - CPU Circuit 9-3
9-4 Main Board - Standard 5PPM Time Base Circuit 9-4
9-5 Main Board - Power Supply Circuit 9-5
9-6 Main Board - Components Location Diagram 9-6
9-7 Front Panel - Keyboard and Display Circuit 9-7
9-8 Front Panel - Components Location Diagram 9-8
9-9 Option 1 - TCXO and x10 Multiplier Circuit 9-9
9-10 Option 1 - Components Location Diagram 9-10
9-11 Option \(2-1.3 \mathrm{GHz}\) Input Amplifier Circuit 9-11
9-12 Option 2 - Components Location Diagrams 9-12

Figure 9-1. Main Board - Input Amplifiers and Trigger Level Control

紫
Figure 9-3. Main Board - CPU Circuit

Page 9-4. Main Board - Standard SPPM Time Base Circuit

NOTES:
1. ALL CAP VALLES ARE GIVEN IN MF UNLESS OTHERWIIEE NOTED.

Figure 9-5. Main Board - Power Supply Circuit

Figure 9-7. Front Panel - Keyboard and Display Circuit

Page 9-8. Front Panel - Components Location Diagram

Page 9-10. Option 1 - Components Location Diagram

COMPONENT SIDE

SOLDER SIDE

Page 9-12. Option 2 - Components Location Diagrams```

